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Contexte

Ce rapport présente le travail que j’ai effectué lors de mon stage de recherche du M1 Jacques Hadamard
de l’ENS Paris-Saclay du 19 avril au 24 juillet 2021. Mon encadrant était Ettore Minguzzi, et la structure
d’accueil était le département de mathématiques de l’université de Florence. Pour mon stage, je souhaitais
travailler sur un sujet mêlant géométrie et physique, donc j’ai contacté Ettore qui m’a proposé un sujet sur
les horizons de Cauchy, ce qui m’a tout de suite intéressé. Les prérequis pour travailler dans ce domaine sont
des notions relativité mathématiques et de géométrie semi-Riemannienne, donc avant le stage j’ai consolidé
mes connaissances dans ce sujet, en lisant [HE73] et [ONe83].

Une fois arrivé à Florence, j’ai commencé par étudier l’article [RB20b] qui présentait un argument
prometteur, le ribbon argument, qui montre un lien entre les différents générateurs d’un horizon de Cauchy.
Étant de l’avis que l’article ne concluait pas sur le problème de manière satisfaisante, nous avons commencé
une preuve de la normalisation de la surface gravity en modifiant le ribbon argument et son utilisation.
Mi-juin, nous avons achevé la preuve de l’incomplétude des générateurs, puis la preuve que la longueur
affine est lisse, les conséquences géométriques, ainsi que le cas d’un horizon dégénéré ont occupé le mois restant.

Le département de mathématiques de l’université de Florence est réparti sur deux sites. La partie Physique
Mathématiques, où était mon bureau, est située dans un ancien monastère sur une colline au dessus de
Florence, c’est un lieu de travail très agréable.
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Cauchy horizons, from regularity to symmetry

Abstract

We prove that in a smooth spacetime satisfying the dominant energy condition, the null
generators of a future non-degenerate compact Cauchy horizon are all future-incomplete. We
then prove the smoothness of the affine length function. A corollary of this result is the
existence of a smooth nowhere-zero null vector field on the horizon that normalises the surface
gravity to a non-zero constant. We mention a few consequences on the geometry and symmetry
of the horizon, and we show that the horizon is in the closure of the chronology violating set.

Résumé

Nous prouvons que dans un espace-temps vérifiant la dominant energy condition, les généra-
teurs d’un horizon de Cauchy futur compact non-dégénéré sont tous incomplets vers le futur.
Nous prouvons ensuite que la longueur affine est lisse. Un corollaire de ce résultat est l’existence
d’un champs de vecteur de type lumière qui normalise la surface gravity à une constante non
nulle. Nous évoquons quelques conséquences sur la géométrie et symétrie de l’horizon, et nous
montrons que l’horizon est dans la fermeture du chronology violating set.

mathematics subject classification 2020 – 53C50, 53C25, 53Z05, 83C75.

Contents
1 Introduction 2

2 Mathematical preliminaries 3
2.1 Null hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Cauchy horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Existence of a smooth horizontal distribution . . . . . . . . . . . . . . . . . . . . . 6
2.4 Horizontal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The genericity of Cauchy horizons 8
3.1 Cosmic censorship and the Isenberg-Moncrief conjecture . . . . . . . . . . . . . . . 8
3.2 The proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 The candidate vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Energy conditions and the connection form 11

5 Symmetry of non-degenerate compact Cauchy horizons 15
5.1 The ribbon argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Future-incompleteness of the null generators . . . . . . . . . . . . . . . . . . . . . . 19
5.3 The homogeneity vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion 34

A Semi-Riemannian geometry 35
A.1 Fundamental aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Some properties of fiber bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3 Existence and uniqueness of horizontal geodesics . . . . . . . . . . . . . . . . . . . 38

B Mathematical relativity 44
B.1 The notion of spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.2 Causality theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C Induction proof of the smoothness of the affine length 46

D Behavior of general null generators 48

1



Cauchy horizons, from regularity to symmetry

1 Introduction
One half of the 2020 Physics Nobel Prize was awarded to Roger Penrose “for the discovery that
black hole formation is a robust prediction of the general theory of relativity”. In his own words
(seminar SCRI21), this description is wrong in the sense that his work, in particular his 1965
Singularity Theorem, predicts the robust formation of singularities, and not of black holes. The
fact that singularities are necessarily hidden inside black holes is the object of the 1969 Penrose
Cosmic censorship hypothesis, and has yet to be confirmed.

However, some progress [MI83; MI18; PR18; Pet19; RB20b] has recently been made in that direc-
tion. To understand it, it is useful to reformulate the Cosmic censorship hypothesis in the following
way : the maximal Cauchy development of generic compact or asymptotically flat initial data is
locally inextendible as a regular Lorentzian manifold. Though complicated at first sight, we will
see later that this formulation highlights the facts that the existence of a naked singularity (i .e.
not inside a black hole) implies the existence of a chronology violating set inside the spacetime,
hidden behind a Cauchy horizon. Thus, to make a step towards the proof of a Cosmic censorship
hypothesis, one can focus on Cauchy horizons, and try to find properties that they satisfy, in order
to discriminate their existence or not.

This report presents a modest such step : the proof that Cauchy horizons present some kind
of symmetry, when assumed to be compact, non future-degenerate, and in a smooth spacetime
satisfying the dominant energy condition. Our result actually holds for more general compact
connected smooth totally geodesic null hypersurfaces.

Some preliminary definitions and results are presented in Section 2 (see [ONe83], [HE73] or [Wal84]
for reference). The objective of Section 3 is to clarify what was stated above, about the alleged
non-genericity of Cauchy horizons, and to present the context (the Isenberg-Moncrief conjecture) of
the results of this report. Section 4 presents the different energy conditions and the fundamental
null-closeness property of a special one-form on the horizon, called the connection form. This
property is then used in Section 5, where we prove the main result of this report (the vocabulary
will be introduced throughout the sections) :

Theorem 1.1
Let H be a non-degenerate compact Cauchy horizon in a smooth spacetime satisfying the dominant
energy condition. Then H admits a smooth nowhere-zero null vector field h that normalises the
surface gravity to −1, i .e. such that

∇hh = −h .

This results shows that the property of normalisation to a non-zero constant of the surface gravity
(i .e. the existence of n such that ∇nn = κn with a constant κ 6= 0), that is satisfied for all the
known examples of compact Cauchy horizons, holds for any compact Cauchy horizon under the
reasonable dominant energy condition. Note that a version of the Cosmic censorship was proved
in [Min15, Theorem 25], for which Theorem 1.1 is a kind of critical case (in vacuum, or when the
weakened stable dominant energy condition doesn’t hold), under which compact Cauchy horizons
may exist, but satisfy some sort of rigidity.

Let us mention that this result was proved, in the vacuum case, by Martín Reiris and Ignacio
Bustamante in 2020 in [RB20b]. A few doubts about this work led us to try to prove ourselves the
result, removing the vacuum hypothesis, in a different (and coordinate-free) way. Along the way,
we introduced useful tools on Cauchy horizons that allowed us to prove new results, notably on
the affine length function, on the curvature tensor, and on the globalness of the behaviors of the
generators. In the end, we think that the proof in [RB20b] is correct, though complicated.

We also wrote the results presented in this report in the form of a submitted article Surface gravity
of compact non-degenerate horizons under the dominant energy condition [GM21].
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2 Mathematical preliminaries

2.1 Null hypersurfaces
The notions of spacetime, null/spacelike/lightlike/timelike vectors are presented in Appendix B.1.
Let (M, g) be a spacetime of dimension n+ 1. As presented in Appendix B.1, a vector X ∈ TM
is null if g(X,X) = 0. A null hypersurface H ⊆M is a differential hypersurface H ofM (that is,
a differential submanifold of dimension n) such that for every p ∈ H, the normal vector of TpH in
TpM is null.

Note that this normal vector is well-defined up to scalar multiplication at every point p of H.
Indeed, as shown in [ONe83, p. 49],

dimTpH+ dimTpH⊥g = n+ 1

so dimTpH⊥g = 1 and one can declare that H is a null hypersurface if any non-zero normal
vector to TpH is null. By definition, the restriction of the metric g to the null hypersurface H is
degenerate, as the normal null vector must be in TpH.

For p ∈M, denote by Np the null cone of TpM. A classic fundamental property of null hypersur-
faces is as follows (a proof is presented below for completeness) :

Proposition 2.1
Let H ⊆ M be a null hypersurface. For every p ∈ H, TpH ∩ Np is a one-dimensional linear
subspace of TpM.

Proof. Let K ∈ Np such that TpH⊥g = RK. We need to show that if v ∈ TpH ∩ Np, K and v

are linearly dependent. K and v are orthogonal null vectors, as v ∈ TpH = (RK)
⊥g. Thus, it is

enough to show that if a null vector u and a causal vector v of the Minkowski space V = Rn+1, with
the metric g = −(dx0)2 + (dx1)2 + ...+ (dxn)2, are orthogonal, then they are linearly dependent.
Let e0 = (1, 0, ..., 0) ∈ V . As e⊥g0 = {0} × Rn, we have V = Re0 + e⊥g0 . Let us write in this
decomposition u = u0 + νe0 and v = v0 + µe0 with u0, v0 ∈ e⊥g0 . Then,

0 = g(u, u) = g(u0 + νe0, u0 + νe0)

= g(u0, u0) + 2νg(u0, e0) + νg(e0, e0)

= g(u0, u0)− ν2

0 ≥ g(v, v) = g(v0 + µe0, v0 + µe0)

= g(v0, v0) + 2µg(v0, e0) + µg(e0, e0)

= g(v0, v0)− µ2

0 = g(u, v) = g(u0 + νe0, v0 + µe0)

= g(u0, v0)− µν

So that g(µu0−νv0, µu0−νv0) ≤ µ2ν2 +µ2ν2−2µνg(u0, v0) = 0. But µu0−νv0 ∈ e⊥g0 = {0}×Rn
which is a spacelike subspace of V , so µu0 − νv0 = 0, which shows that µu − νv = 0 i .e. that u
and v are linearly dependent.

This property applied at every point also shows that the set of null nowhere-zero vector fields
tangent to H is a F(H,R∗+)-module of dimension 1. The following proposition will allow us to
freely consider global smooth normal null vector fields on null hypersurfaces.
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2 Mathematical preliminaries

Proposition 2.2

Let H ⊆ M be a null hypersurface of a spacetime (M, g). There is a smooth nowhere-zero null
vector field Z on H tangent to H.

As introduced in Appendix B.1, by definition, a spacetime is time-oriented, thus contains a global
timelike smooth vector field which can be chosen to be future directed (recall that a vector T ∈ TM
is timelike if g(T, T ) < 0).

Proof. Let T be a global timelike smooth vector field on M. T must be transverse to the null
hypersurface H. Indeed, if TH contained a timelike vector, as shown in [ONe83, Lemma 5.27],
it would be a timelike subspace of TM, which is absurd as the metric is degenerate on H. Thus
T /∈ TH, and as TH is a hyperplane, RT ⊕ TH = TM.

Let β be the one-form onM such that β(T ) = 1 and such that β(X) = 0 for every X tangent to
H. Now, let Z = β]|H be the vector field defined on H metrically equivalent to β, i .e. such that
g(Z, · ) = β on H. It is always possible to find this Z by defining the coordinates

Zµ = gµνβν

in some coordinate basis (∂0, ... , ∂n) of TpM. Z is clearly smooth by the preceding formula, as β
is smooth. Z is tangent to H because if X ∈ TpH is non-zero such that RX = TpH⊥, we know
that X must be null and hence tangent to H, thus

g(Z(p), X) = βp(X) = 0

so Z(p) ∈ X⊥ = TpH. Z is null because g(Z,Z) = β(Z) = 0 as Z ∈ ΓH. Finally, V is nowhere
zero because if Z(p) = 0, 1 = βp(T (p)) = 0 which is a contradiction.

2.2 Cauchy horizons
Most of the vocabulary used in this section is defined in Appendix B.2. We introduce here the
main object on which we will work : Cauchy horizons. Let (M, g) be a spacetime, and let S ⊆M.
The future and past Cauchy developments of S are defined respectively as :

D+(S) =
{
p ∈M

∣∣∣ every past inext. causal curve through p intersects S
}

D−(S) =
{
p ∈M

∣∣∣ every future inext. causal curve through p intersects S
}
.

Thus, the future Cauchy development of S is the set of points that are causally completely deter-
mined by S, i .e. if q ∈ D+(S) is in the causal future of p ∈M, then p is in the causal future of S
or the opposite.

We then define the future and past Cauchy horizon of S respectively as :

H+(S) = D+(S)\I−(D+(S))

H−(S) = D−(S)\I+(D−(S)) .

Recall that for P ⊆ M, I+(P ) (resp. I−(P )) is the chronological future (resp. past) of P , which
consists of the set of point q ∈ M such that q is the end (resp. beginning) of a timelike curve
starting (resp. ending) in P , as introduced in Annex B.2.

Thus, the future Cauchy horizon of S consists in the "future boundary" of D+(S), i .e. consists
in the set of points in the boundary of D+(S) which are in the chronological future of no points
of D+(S). In some way, the future Cauchy horizon of S is the boundary beyond which spacetime
cannot be predicted with the only knowledge of S. This interpretation is illustred by the following
property, proved in [Min19, p. 89] :
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2 Mathematical preliminaries

Proposition 2.3

Let S ⊆M be closed and achronal. Then H+(S) = ∅ if and only if

S ∪ I+(S) =
{
p ∈M

∣∣∣ every past inext. timelike curve through p intersects S
}
.

Thus, the future Cauchy horizon of a closed achronal set S is empty if and only if the chronological
future of S can be predicted by the knowledge of S. From this fact, we can begin to believe that
the presence of Cauchy horizons is not physically acceptable, as it goes against the concepts of
determinism and predictability. This will be discussed in Section 3.

As shown in [CI94], Cauchy horizons can be arbitrarily complicated sets. However, assuming
compactness of a Cauchy horizon H gives a lot of information.

Totally geodesic submanifolds

Denote ∇ the Levi-Civita connection of a spacetime (M, g). Given a general submanifoldW ⊆M
and X,Y ∈ ΓW, as shown in [ONe83, p. 98], there are local extensions of X,Y to vector fields on
open coordinate sets ofM, that we still denote X,Y . We can then define the covariant derivative
∇ restricted to W as :

∇XY = (∇XY )
∣∣∣
W
.

It can be shown, for example in [ONe83, Lemma 4.1] that ∇XY only depends on the value of
X and Y on W, and not on the coordinate extension. However, this definition doesn’t define a
connection on W in general, as ∇XY might not be tangent to W. When it is the case, we say that
W is a totally geodesic submanifold of M, and then ∇, that we relabel ∇, is a connection on W
that inherits properties of the original connection ∇. For example if X,Y, Z ∈ ΓW,

∇Z [g(X,Y )] = g(∇ZX,Y ) + g(X,∇ZY ) .

Indeed, this equation is just the restriction to W of the same equation onM replacing X,Y, Z by
their extensions.

The following property, which follows from [Min15, Theorem 18] is fundamental.
Theorem 2.1

Let S be a connected partial Cauchy hypersurface of a smooth spacetime (M, g) on which the null
energy condition holds, and suppose that its future Cauchy horizon H+(S) is compact. Then H+(S)
is a smooth totally geodesic null hypersurface of (M, g), ruled by null geodesics.

The null energy condition will be introduced in Section 4. As introduced in Appendix B.2, a
partial Cauchy hypersurface is an acausal and edgeless hypersurface ofM. The last statement of
Theorem 2.1 means that for every p ∈ H+(S), there is a unique null geodesic through p contained
in H+(S). These null geodesics will be called the generators or the null generators of the horizon.
From now on, we will call simply compact Cauchy horizon any connected compact future Cauchy
horizon H+(S) where S is as in Theorem 2.1.

Proof of Theorem 2.1. The main steps are presented here. Denote H = H+(S).

Topological hypersurface : As S is acausal, I+(S) ∩ I−(S) = ∅. If we denote the past set
P = D+(S) ∪ I−(S), we have by Proposition B.4 that, as I+(S) and I−(S) are open,

H = I+(S) ∩ ∂D+(S) = I+(S) ∩ ∂P .

Moreover, by Corollary B.1, as P is a past set, ∂P is a topological hypersurface of M. Thus, as
I+(S) is open, H is a topological hypersurface ofM.
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2 Mathematical preliminaries

Smooth hypersurface : This is the most difficult step of the proof, which uses compactness and
the null energy condition, and can be found in [Min15, Theorem 18]. This theorem also shows
that, denoting n the normal to H, the Weingarten map

b : TH/n −→ TH/n
X 7−→ ∇Xn

is identically zero, i .e. for every X ∈ TH, b(X) is proportional to n.

Ruled by null geodesics : This well-know fact directly comes from the definition of the Cauchy
horizon and can be found for example in [HE73, p. 204].

Null hypersurface : This comes from the preceding fact and the achronality of H. Note that
H = D+(S)\I−(D+(S)) is indeed achronal, because if γ : p −→ q is a timelike curve connecting
two points p, q ∈ H then by openness of the chronological relation I, p ∈ I−(D+(S)) ⊂ I−(D+(S))
which is absurd as p ∈ H. Now, let w ∈ TpM be a non-zero normal vector to TpH. If w
was spacelike, TpM would contain some timelike vector that would be the derivative of a locally
timelike curve traced on H, which is absurd by achronality. Thus w is causal and orthogonal to
the initial velocity v of the null generator leaving p, thus is proportional to v by the demonstration
of Proposition 2.1, hence is null.

Totally geodesic : Let X,Y ∈ ΓH. We need to show that ∇XY is tangent to H at any p ∈ H.
Let N ∈ TpM be a null vector independant of n, the null normal to TpH. As g(N,n) 6= 0 by the
demonstration of Proposition 2.1, we can rescale N to get g(N,n) = −1. Now, the coordinate of
∇XY on N in the splitting TpM = TpH+ RN is

−g(n,∇XY ) = g(∇Xn, Y ) = 0

because g(∇Xn, Y ) + g(n,∇XY ) = ∇X [g(n, Y )] = 0 and because ∇Xn = b(X) is proportional to
n which is orthogonal to Y . Hence the result.

2.3 Existence of a smooth horizontal distribution
Let H be a compact Cauchy horizon. Let N −→ H be the null bundle of H. As proved in
Proposition 2.2, there is a smooth null nowhere-zero vector field Z ∈ ΓH, and by Proposition 2.1,
we have N = RZ. We call horizontal distribution any smooth subbundle H −→ H of the tangent
bundle TH supplementary to N in TH, i .e. such that N ⊕H = TH, where

N ⊕H =
⊔
p∈H
{p} × (Np ⊕Hp) .

The aim of this section is to show the existence of such a horizontal distribution H. Denote V a
global smooth timelike vector field onM.

Proposition 2.4

The bundle H := V ⊥ ∩ TH :=
⊔
p∈H
{p} ×

(
V (p)⊥ ∩ TpH

)
−→ H is a horizontal distribution.

Proof. The smoothness of H follows from the smoothness of V . Indeed, V ⊥ = kerV [ is a smooth
subbundle by Proposition A.4. TH −→ H is also a smooth subbundle because H is a smooth
submanifold of M. Moreover, as V is nowhere zero, and as TpH is a hyperplane of TpM that is
not equal to V ⊥ because H is a null hypersurface (the orthogonal of a timelike vector is spacelike
as shown in [ONe83, Lemma 5.26]), dim(V (p)⊥ ∩ TpH) = n− 1 is independant of p ∈ H. Thus H
is smooth by Proposition A.5.
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2 Mathematical preliminaries

We also need to check that N ⊕H = TH. First, notice that Hp = V (p)⊥ ∩ TpH is a hyperplane
of TpH, as V (p)⊥ is a hyperplane of TpM that doesn’t contain TpH otherwise V (p) ∈ Z(p)⊥.
This is absurd because V is timelike and, denoting C the causal cone in p, we saw in Section 2.1,
Z(p)⊥ ∩ C = RZ(p). Thus, Hp is a hyperplane of TpM and we only need to check that Z /∈ Hp,
which follows again from the fact that Z and V are not orthogonal.

We will use this horizontal distribution H to have a global direction transverse to the null direction
of H. This will allow us to use the compactness of H to bound quantities defined on horizontal
curves, which will be fundamental in Section 5 (see for example Lemma 5.3). Notice that a
horizontal distribution H is necessarily spacelike, becauce TH doesn’t contain any timelike vector
because its normal is null but the orthogonal of a timelike vector is spacelike.

2.4 Horizontal geometry
This section presents some results of sub-Riemannian geometry. The proofs are included in ap-
pendix for completeness. Let H be a compact Cauchy horizon, and let H be a horizontal distribu-
tion. Denote

π : TH = H ⊕N −→ H

the canonical projection. A vector field Y ∈ ΓH is said to be horizontal if for every p, Y (p) ∈ Hp.
We say that a curve is horizontal if its velocity is horizontal at every point.

We also say that a curve γ : (−ε, ε) −→ H is a horizontal geodesic if for every s,

γ′(s) ∈ Hγ(s) and π (∇γ′γ′(s)) = 0 .

The following proposition will allow us to use horizontal geodesics the same way we use usual
geodesics. Actually, we see in the proof that in order to show the local existence and uniqueness of
horizontal geodesics, we can use the similar well-known result for usual geodesics in Riemannian
manifolds.
Proposition 2.5

For every p ∈ H and v ∈ Hp, there is a unique horizontal geodesic γ : R −→ H such that γ(0) = p
and γ′(0) = v.

The proof of Proposition 2.5 is the object of Appendix A.3. We can then define the horizontal
exponential map

exp : H −→ H
(p, v) 7−→ γp,v(1)

where γp,v is the horizontal geodesic defined on R such that γp,v(0) = p and γ′p,v(0) = v. The
following property of the usual exponential map is still true for the horizontal exponential map :

Proposition 2.6

Let p ∈ H and v ∈ Hp. Denote by expp the map exp(p, · ) : Hp −→ H. Then d(expp)0(v) = v.

Proof. First, notice that γp,v(s) = γp,v(s. · 1) = exp(p, sv) because t 7−→ γp,v(st) is the curve
horizontal leaving p at velocity sv. If α(s) = sv, we have α(0) = 0, α′(0) = v, thus

d(expp)0(v) = d(expp)α(0)(α
′(0)) =

d

ds
(exp(p, α(s))|s=0 = γ′p,v(0) = v .
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3 The genericity of Cauchy horizons
This section provides the context of the results proved in the following sections, and their links
with famous problems of General Relativity. The definition of a vacuum spacetime is presented in
Section 4. We denote L the Lie derivative and ∇ the Levi-Civita connection.

3.1 Cosmic censorship and the Isenberg-Moncrief conjecture
As we began to see in Section 2.2, the occurrence of Cauchy horizons goes against the concept of
determinism and predictability. For this reason, and other technical aspects, the particular case of
spacetimes with Cauchy horizons is often put aside in General Relativity theorems. To justify this,
Roger Penrose formulated in 1969 the Cosmic censorship hypothesis, which states (in the strong
case) that the maximal Cauchy development of generic compact or asymptotically flat initial data
is locally inextendible as a regular Lorentzian manifold. In other words, it states that there is a
region whose predictability set is the whole inextendible spacetime.

This is typically not the case in the presence of Cauchy horizons where predictability breaks down,
hence the series of articles [MI83; MI18; PR18; Pet19; RB20b] with the objective of discriminating
the existence of Cauchy horizons, under physical assumptions on the spacetime.

A Killing horizon of a spacetime (M, g) is a null hypersurface H defined by the vanishing of the
g−norm of a Killing vector field defined on a neighbourhood of H i .e. there is an open set U ⊇ H
and a Killing vector field K (such that LKg = 0, see Appendix A) on U such that

H =
{
p ∈ U

∣∣∣ g(K(p),K(p)) = 0
}
.

In accordance with the non-genericity of Cauchy horizons in the compact case, Jim Isenberg and
Vincent Moncrief conjectured in their article Symmetries of cosmological Cauchy horizons (1983)
[MI83] that compact Cauchy horizons of smooth vacuum spacetimes are Killing horizons. It is
a known fact that spacetimes with Killing fields are non-generic (for example, see [MM15] which
shows that the set of spacetimes with no Killing fields is an open and dense subset of the set of
all spacetimes, for a suitable topology). Thus, if proved, this Isenberg-Moncrief conjecture goes
in favor of the Penrose Cosmic censorship hypothesis, by showing that vacuum spacetimes with
compact Cauchy horizons admit a Killing symmetry, which is a non-generic property.

3.2 The proof strategy
We say that the surface gravity of a compact Cauchy horizon H of a spacetime (M, g) can be
normalized to a non zero constant if there is a smooth lightlike nowhere-zero vector field K on
H, tangent to H, such that ∇KK = κK, with κ a non-zero constant. Note that we can suppose
κ = −1. Indeed, rescaling V := −K/κ, we get

∇V V =
1

κ2
∇KK =

1

κ
K = −V .

In [PR18] and [Pet19], Oliver Lindblad Petersen and István Rácz proved1 that in a vacuum space-
time, a compact Cauchy horizon whose surface gravity can be normalised to a non-zero constant
is a Killing horizon. Let us call pre-Killing field any smooth lightlike nowhere-zero vector field K
on H, tangent to H, such that

∇KK = −K . (3.1)

Thus, to demonstrate the Isenberg-Moncrief conjecture in the class of smooth vacuum spacetimes,
it is enough to show any compact Cauchy horizon has a pre-Killing field. However, in [MI83],

1it is worth to mention that we pointed out to them a mistake spotted in [PR18, Lemma 2.8], that was fixed and
will be addressed in the next version of their article.
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3 The genericity of Cauchy horizons

Isenberg and Moncrief found examples of null hypersurfaces for which this result is not true. These
examples all have the specificity that their null generators are future-complete. A compact Cauchy
horizon is said to be non-degenerate if at least one of its null generators is future-incomplete.
Though it is unclear if these "degenerate" null hypersurfaces in [MI83] can be realized as Cauchy
horizons, we can still state a more precise version of the Isenberg-Moncrief conjecture as follows :

Isenberg-Moncrief conjecture (weaker version)
The surface gravity of a non-degenerate connected compact Cauchy horizon can be normalized to
a non-zero constant.

Even though the conjecture is stated for vacuum spacetimes, we will see that this result is true
for Cauchy horizons of spacetimes satisfying a weaker energy condition, introduced in Section 4.
The proof of this result is the object of Section 5. Before all this though, we will discuss a way to
reduce this problem into two different steps.

3.3 The candidate vector field
First, let us find a necessary condition for K to be a pre-Killing vector on H. Suppose for a moment
that there is a pre-Killing vector field K on H. Let p ∈ H and γ : I = [0, L) −→ H be the unique
future-inextensible geodesic such that γ(0) = p, γ′(0) = K(p) (recall that H is totally geodesic).
For every s ∈ I, γ′(s) is null (as the causal character of a geodesic is constant) and γ(s) ∈ H so
γ′(s) ∈ Tγ(s)H∩Nγ(s). By Proposition 2.1, as K is nowhere-zero lightlike tangent to H, there is a
function f : I −→ R\{0} such that for every s ∈ I,

γ′(s) = f(s)K(γ(s)) . (3.2)

It is easy to see that f is smooth. Moreover, as K satisfies Equation (3.1), and as γ is a geodesic,
we have

0 = ∇γ′(s)γ′(s)
= ∇γ′(s)(f(s)K(γ(s)))

= f ′(s)K(γ(s)) + f(s)∇f(s)K(γ(s))K(γ(s))

= f ′(s)K(γ(s)) + f(s)2 (∇KK) (γ(s))

= (f ′(s)− f(s)2)K(γ(s))

so f satisfies f ′ = f2. As f is never zero, we have (1/f)′ = −f ′/f2 = −1, and after integration
and the fact that f(0) = 1 as γ′(0) = K(p), we find

f(s) =
1

1− s

on I = [0, L), which shows that L ≤ 1. If we had L < 1, by compactness we could find a converging
sequence sn −→ L, γ(sn) −→ q, which implies γ′(sn) −→ K(q)/(1− L). This is absurd as we can
now extend γ with the null geodesic leaving q with velocity K(q)/(1 − L), in contradiction with
the inextensibility of γ. This shows that L = 1, and L is by definition the affine length of the
geodesic γ (see Appendix A).

Thus, K(p) is the initial velocity of the lightlike geodesic starting at p with affine length 1.

This fact was noticed in [RB20b], where was proposed the following proof strategy : if H is any
non-degenerate compact Cauchy horizon, show that

(i) All the future null geodesics of H have finite affine length.
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3 The genericity of Cauchy horizons

(ii) The candidate vector field K defined on H by
K(p) is the initial velocity of the lightlike geodesic starting at p with affine length 1
is a pre-Killing field.

Note that if (i) is satisfied (and if K is well-defined, which we will show just after), K will
automatically be lightlike and nowhere-zero, so we would only need to show that K is smooth and
satisfies Equation (3.1).

Under the assumption that (i) is satisfied, let us precise the definition of the vector field K in (ii).
Proposition 2.2 allows us to consider a global null nowhere-zero vector field Z on H. For p ∈ H,
denote by L(p) the affine length of the null geodesic leaving p at velocity Z(p), and then define

K(p) := L(p)Z(p) .

Notice that this definition doesn’t depend on the vector field Z chosen. Indeed, if V is another
one, let λ ∈ R such that V (p) = λZ(p). Let γ : [0, LV (p)) −→ H (resp. β : [0, LZ(p)) −→ H) be
the geodesic leaving p at velocity V (p) (resp. Z(p)). Necessarily, γ(t) = β(λt). Indeed, t 7−→ β(λt)
is clearly a geodesic leaving p in t = 0 with velocity λβ′(0) = V (p). Thus, the inextendibility
condition reads λLV (p) = LZ(p), which shows

LV (p)V (p) = LZ(p)Z(p) .

Moreover, K(p) is the unique initial velocity for which the null geodesic starting at p has an affine
length 1, as the calculation above shows that the affine length of the null geodesic starting at p
with velocity λZ(p) is L(p)/λ.

Also note that to show that K is smooth, it is enough to show that the function L is smooth. Still
under the assumption that (i) is satisfied, and supposing that K is smooth, let us show that (ii) is
satisfied.
Let p ∈ H and let γ : [0, 1) −→ H be the inextensible null geodesic starting at p with velocity
K(p). By Proposition 2.1, there is a function f such that for every s ∈ [0, 1),

γ′(s) = f(s)K(γ(s)) .

We necessarily have f(s) = 1/(1 − s). Indeed, if s0 ∈ [0, 1), the null geodesic α starting at γ(s0)
with velocity γ′(s0) is γ|[s0,1), and has an affine length of 1− s0. Thus, the null geodesic β starting
at γ(s0) with velocity (1 − s0)γ′(s0) clearly satisfies β(t) = α((1 − s0)t), and thus has an affine
length of (1− s0)/(1− s0) = 1. By uniqueness,

K(γ(s0)) = (1− s0)γ′(s0) .

We can now compute :

(∇KK)(p) = (∇γ′K ◦ γ)(0)

= ∇γ′(1− s)γ′(s)|s=0

= (1− 1)∇γ′γ′(0)− γ′(0)

= −K(p)

which shows that (ii) is satisfied. Thus, to prove the conjecture, one only needs to prove (i), and
then check that the candidate vector field is smooth. In Section 5.2, we will show (i), and then
show that the affine length function is smooth in Section 5.3 and Appendix C. In this objective,
before that, we will study in Section 4 the fundamental properties of a special one-form, under
energy assumtions on the spacetime.
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4 Energy conditions and the connection form
Recall that on a totally geodesic hypersurface H, one can restrict the spacetime connection ∇ to
H to differentiate vector fields on H and get fields that are still tangent to H, see Section 2.2. The
fact that TH∩ N is a one-dimensional vector bundle will allow us to define a particular one-form
on H, that will be related to curvature and to the affine length of null geodesics on H.
Lemma 4.1
Let Z ∈ ΓH be a nowhere-zero null vector field on H. For every vector field Y ∈ ΓH, ∇Y Z is a
null vector field.

Proof. As Z is normal to TH, we have g(∇Y Z,Z) = 0. Thus, by property of the Levi-Civita con-
nection (recall that the restriction of ∇ to H is defined by extending fields on H to a neighbourhood
of H), we have

0 = ∇Y [g(∇Y Z,Z)]

= g(∇2
Y Z,Z) + g(∇Y Z,∇Y Z)

= g(∇Y Z,∇Y Z)

which shows that ∇Y Z is null.

We then deduce the following proposition :

Proposition 4.1
For every nowhere-zero null vector field Z ∈ ΓH, there is a one-form ωZ on H such that for every
Y ∈ TH,

∇Y Z = ωZ(Y )Z .

Proof. Let Y ∈ ΓH. By Lemma 4.1 and Proposition 2.1, we get that at every point of H, as Z is
non-zero, ∇Y Z is proportionnal to Z, hence the existence of a function ωZ(Y ) : H −→ R satisfying
∇Y Z = ωZ(Y )Z. Moreover, ωZ is clearly F(H)-linear by definition. Thus, to show that ωZ is a
one-form, we only need to check that for any Y , ωZ(Y ) is smooth. We can do this locally. Let
p ∈ H and V ↪−→◦ M containing p and a frame field (e0, ... , en) on a V, i .e. vector fields ei such that
at every point, (ei) is a g-orthonormal basis of TM (see [ONe83, p. 84] for the existence). We can
compute

Z = −g(Z, e0)e0 +

n∑
i=1

g(Z, ei)ei

∇Y Z = −g(∇Y Z, e0)e0 +

n∑
i=1

g(∇Y Z, ei)ei .

Moreover, Z is null and non-zero, which shows that −g(Z, e0), the coordinate of Z on e0, is non
zero. Thus, we get on V ∩ H that

ωZ(Y ) =
g(∇Y Z, e0)

g(Z, e0)

is smooth.

We will see after this section how to link ωZ with the affine length of null geodesics. Before
that, in the case where H is a compact Cauchy horizon, and under a physical assumption on the
spacetime (M, g), we will show a fundamental property of ωZ , described in the following theorem.
We denote dω the exterior derivative of a form ω. Notice that actually, we can define ωZ for any
non-necessarily smooth nowhere-zero null vector field Z. If Z is C k, ωZ will be C k−1.
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4 Energy conditions and the connection form

Theorem 4.1

Suppose that the spacetime (M, g) satisfies the dominant energy condition. Let H ⊆ M be a
compact Cauchy horizon. Let Z be a nowhere-zero smooth null vector field on H. The one-form
ωZ on H defined in Proposition 4.1 is null-closed, that is, for every Y ∈ TH,

dωZ(Z, Y ) = 0 .

We will introduce the dominant energy condition just after. Note that this result implies that for
any null vector field X tangent to H, dωZ(X,Y ) = 0. Also note that this result makes sense only
if the compact Cauchy horizon H is a smooth null totally geodesic hypersurface. We know since
Section 2.2 that it is true if the null convergence condition is satisfied. Thanksfully, we will see
that it is implied by the dominant energy condition.

The conclusion of Theorem 4.1 was proved in gaussian coordinates by Vincent Moncrief and
James Isenberg in [MI18, Section E] under the assumption that the spacetime is vacuum. We
show here, in a simpler proof, that this result is still true under the weaker assumption that the
spacetime satisfies the dominant energy condition (DEC), that we introduce now.

In accordance with the Einstein field equations, define the stress-energy tensor T such that

Rµν −
1

2
Rgµν + λgµν = kTµν (4.1)

where R is the scalar curvature, Rµν , gµν are the coordinates of the Ricci tensor Ric and of
the metric g in a local coordinate basis (x0, ... , xn), k is the Einstein gravitational constant
k = 8πG/c4, and λ is the cosmological constant (not assumed to be zero in this work). The energy
conditions that we will mention are as follows :

(i). Vacuum spacetime :
The stress-energy tensor of the spacetime (M, g) is zero.

(ii). Dominant energy condition :
For every future-directed causal vector Xµ∂µ, the vector T νµXµ∂ν is causal past-directed.

(iii). Null energy condition :
For every null vector V , T (V, V ) ≥ 0. Note that the Einstein field equations (4.1) show that
it is equivalent to Ric(V, V ) ≥ 0.

Recall that the raising of indices is defined by T νµ = gναTαµ where gνα is the inverse matrix of gνα.
Clearly, (i) =⇒ (ii). We also have (ii) =⇒ (iii) as T (V, V ) = TµνV

µV ν = gµαT
α
νV

µV ν =
g(V, T νµV

µ∂ν) ≥ 0 because V and T νµV µ∂ν are causals in opposite time directions.

Physically, the null energy condition states that the energy density must be positive, the DEC
states that mass-energy cannot travel faster than the speed of light, and the vacuum condition
states that there is no matter-energy. Clearly, the DEC is more physically acceptable than the
vacuum condition in general.

The function ωZ(Z) is called surface gravity (associated to Z). Notice that the objective of Section
3.3 is to normalise the surface gravity to −1, i .e. find Z such that ωZ(Z) = −1. We will now prove
Theorem 4.1. Let H and Z be like in the hypothesis of Theorem 4.1.

Lemma 4.2
Let v ∈ N be a null vector. If we denote by C the causal cone, we have

v⊥ ∩ C = Rv .

12



4 Energy conditions and the connection form

Proof. The inclusion ⊇ is clear. Suppose that there is a causal vector w ∈ v⊥ linearly independent
of v. The demonstration of Proposition 2.1 shows that w is timelike. But then v ∈ w⊥ which is a
spacelike subspace, as shown in [ONe83, Lemma 5.26]. This is a contradiction as v is null.

Proposition 4.2

Under the dominant energy condition, the one-form Ric(Z, · ) is identically zero on H.

Proof. The important point, as shown in [Min15, Theorem 18], is that

Ric(Z,Z) = 0 . (4.2)

Let U be the vector field defined on H metrically equivalent to the one-form T (Z, · ), i .e. such that
g(U, · ) = T (Z, · ) (U is not necessarily tangent to H, for the existence, see [ONe83, Prop. 3.10], or
take the following calculation as a definition of U). Let us calculate the coordinates of U in some
local coordinate basis. By definition,

gµνU
µ = TανZ

α

i .e. Uµ = gµνTανZ
α

i .e. Uµ = TµαZ
α .

Thus, by the dominant energy condition, U is causal past directed. Moreover, by the Einstein
equation,

T =
1

k
(Ric− 1

2
Rg + λg)

thus, as Z is null, and by definition of U , and by (4.2),

g(U,Z) = T (Z,Z) =
1

k
(Ric(Z,Z)− 1

2
Rg(Z,Z) + λg(Z,Z)) = 0 .

This shows that U ∈ Z⊥ ∩ C where C is the causal cone. By Lemma 4.2, U is proportional to Z,
thus T (Z, · ) is proportional to g(Z, · ). We conclude, with the Einstein equation, that

Ric(Z, · ) = kT (Z, · ) +
1

2
Rg(Z, · )− λg(Z, · )

is proportional to g(Z, · ), which is identically zero on H as Z is normal to H.
Proposition 4.3

Let (V, g) be a Minkowski space and v ∈ V a null vector. For any g-orthogonal spacelike vectors
(b1, ... , bn−1) of v⊥, there is a null vector w ∈ V such that (v, w, b1, ... , bn−1) is a basis of V , w is
normal to b1, ... , bn−1, and g(v, w) = −1.

Proof. Let H = v⊥. Let P be a subspace of H supplementary to Rv in H. The metric on P is
non-degenerate, as P cannot contain any non-zero null vector, and has to be spacelike because
otherwise P would contain independant a null vector, as shown in [ONe83, Lemma 5.27].

Let b1, ..., bn−1 be an orthonormal basis of (P, g). As shown in [Min19, p. 168], as P is a codimension
2 subspace that does not intersect the null cone of V , and by convexity of the null cone, there
are two different hyperplanes H± containing P and tangent to the null cone, thus containing null
vectors w±. By definition of P , one of those null vectors, say n+, is v. Let w := n−. Lemma 4.2
shows that w⊥ is the hyperplane of V tangent to the null cone on Rw, thus w⊥ = H−. v and w
cannot be linearly dependent otherwise H− = H+, which shows that (v, w, b1, ... , bn−1) is a basis
of V , with v, w orthogonal to b1, ... , bn−1. Moreover, by the demonstration of Proposition 2.1, as
v and w are nulls, they cannot be orthogonal otherwise they would be linearly dependent, thus we
can renormalise w to get g(v, w) = −1.
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4 Energy conditions and the connection form

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let Y,W ∈ ΓH. By definition of ωZ , the following equalities hold :

∇W∇Y Z = ∇W (ωZ(Y )Z) = ωZ(W )ωZ(Y )Z +W (ωZ(Y ))Z

∇Y∇WZ = ∇Y (ωZ(W )Z) = ωZ(W )ωZ(Y )Z + Y (ωZ(W ))Z

∇[Y,W ]Z = ωZ([Y,W ])Z .

Thus, by definition of the curvature tensor R,

R(W,Y )Z = ∇W∇Y Z −∇Y∇WZ −∇[Y,W ]Z

= (W (ωZ(Y ))− Y (ωZ(W ))− ωZ([Y,W ]))Z .

By the classic formula for the exterior derivative of a one-form, we get

R(W,Y )Z = dωZ(W,Y )Z . (4.3)

Note that this equation only holds on H for vector fields Y,W tangent to H. Let e1, ... , en−1 be
vectors tangent to H such that (e0 = Z, e1, ... , en−1) is a basis of TpH. In this basis, the coordinate
of dωZ(ei, Y )Z on ei is zero, except for i = 0, where it is dωZ(Z, Y ). Thus,

Tr

(
TpH −→ TpH
W 7−→ dωZ(W,Y )Z

)
= dωZ(Z, Y )

which shows that

dωZ(Z, Y ) = Tr

(
TpH −→ TpH
W 7−→ R(W,Y )Z

)
. (4.4)

Recall that by definition,

Ric(Z, Y ) = Tr

(
TpM −→ TpM
W 7−→ R(W,Y )Z

)
.

We will now show that the traces on H and onM are equal. As in Proposition 4.3, let b1, ..., bn−1 ∈
TpH, N ∈ TpM null, such that (Z,N, b1, ..., bn−1) is a basis of TpM, such that N is orthogonal
to b1, ..., bn−1, such that the bi’s are orthonormals, and such that g(Z,N) = −1. By definition of
the trace, we only need to show that the coordinate of R(N,Y )Z on N in this basis is 0.
Let ν, µ, η1, ... , ηn−1 ∈ R such that

R(N,Y )Z = νN + µZ +

n−1∑
i=1

ηibi .

We can now compute :

−g(Z,R(N,Y )Z) = −νg(Z,N)− µg(Z,Z)−
n−1∑
i=1

ηig(Z, bi) = ν .

(which shows that the in the dual basis of (Z,N, b1, ... , bn−1), the dual of N is −g(Z, ·).) Moreover,
in local coordinates (xµ)0≤µ≤n, we can compute

g(Z,R(N,Y )Z) = gµνZ
µWαNβZγRνγαβ

= WαNβZγZµRµγαβ .
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But, by swapping the indices γ and µ, and by antisymmetry of the curvature tensor in the first
two indices Rγµαβ = −Rµγαβ (see for example [HE73, p. 41]) , we get

ZγZµRµγαβ = ZγZµRγµαβ

= −ZγZµRµγαβ

which shows that ZγZµRµαβγ , hence µ, is zero. Thus, by (4.4),

dωZ(Z, Y ) = Ric(Z, Y ) .

We now conclude by Proposition 4.2 that dωZ(Z, Y ) is zero.

5 Symmetry of non-degenerate compact Cauchy horizons
As introduced in Section 3, we will now show that the surface gravity of a non-degenerate compact
Cauchy horizon can be normalised to −1. Before showing the future-incompleteness and the
smoothness of the affine length, we present the ribbon argument, that was first introduced in
[MI08], but which is modified here using a horizontal lift. We fix in this section H a non-degenerate
compact Cauchy horizon in a spacetime satisfying the dominant energy condition.

5.1 The ribbon argument
Let Z be a future-directed null nowhere-zero vector field on H tangent to H. Denote ϕ : H×R −→
H the flow of Z and for p ∈ H, the curve ϕp := ϕ(p, · ) : R −→ H. Also denote Z∗ the smooth
one form on H such that Z∗(Z) = 1 and Z∗|H = 0, where H is a horizontal distribution. For ω a
one-form on H, p ∈ H and ρ ≥ 0, we denote when possible∫

ϕp

ω =

∫ ∞
0

ω(Z(ϕ(p, z))) dz

and ∫ ρ

ϕp

ω :=

∫
ϕp|[0,ρ]

ω =

∫ ρ

0

ω(Z(ϕ(p, z))) dz

the integral of ω on ϕp up to ρ. We also define

F :=
{

(p, e1, ... , en)
∣∣∣ p ∈M, ei ∈ Hp, (e1, ... , en) is an orthonormal basis of Hp

}
the frame bundle of H.
Proposition 5.1

Let (p0, e1, ... , en−1) ∈ F . There is ε > 0 and η > 0 such that the map

ψp,(ei) : Rn −→ H
(x1, ... , xn−1, z) 7−→ ϕ(exp(p0, x

iei), z)

restricted to B(0, ε)× (−η, η) is a diffeomorphism onto its image.

Notice that the image ψp,(ei)(B(0, ε) × (−η, η)) doesn’t depend on the chosen orthonormal basis
(ei) of Hp.

Proof. By the inverse function theorem, we only need to show that the differential of ψp,(ei) in
0 ∈ Rn is an isomorphism. We can compute, for 1 ≤ i ≤ n− 1,

dψ
p,(ei)
0 (∂z) =

d

dz
[ϕ(exp(p0, 0), z)]z=0 =

d

dz
[ϕ(p0, z)]z=0 = Z(p0)

dψ
p,(ei)
0 (∂i) =

d

dt
[ϕ(exp(p0, tei), 0)]t=0 =

d

dt
[exp(p0, tei)]t=0 = ei
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5 The ribbon argument

by Proposition 2.6. Thus, the image by dψ
p,(ei)
0 of the basis (∂1, ..., , ∂n−1, ∂z) of T0Rn is the basis

(e1, ..., en−1, Z(p0)) of Tp0H, hence the result.

Proposition 5.2

Let α : [0, 1] −→ H be a horizontal curve with nowhere-zero velocity, and denote α(0) = p. For
every ρ ≥ 0, there is a unique horizontal curve with nowhere-zero velocity αρ : [0, 1] −→ H such
that
(i) αρ(0) = ϕ(p, ρ)
(ii) αρ(t) ∈ ϕα(t) .
The curve αρ is called the ρ-horizontal lift of α.

Proof. If it exists, αρ has to be of the form αρ(t) = ϕ(α(t), f(t)) with f(0) = ρ. We can compute

α′ρ(t) = d(ϕf(t))α(t)(α
′(t)) + f ′(t)Z(ϕ(α(t), f(t))) .

Thus, as αρ is horizontal, f satisfies the ODE{
f ′(t) = −Z∗(d(ϕf(t))α(t)(α

′(t)))

f(0) = ρ

which has a unique solution, by ODE theory. Hence the uniqueness. For the existence, defining
αρ by the formula above where f is the solution of the previous ODE gives a horizontal curve
projecting on α with the right initial condition, the only thing left to prove is that it has a
nowhere zero velocity. Suppose that α′ρ(t) = 0, i .e. that d(ϕf(t))α(t)(α

′(t)) ∈ RZ. Then α′(t) =
dϕ−f(t)(d(ϕf(t))α(t)(α

′(t))) ∈ RZ ∩H, which implies that α′(t) = 0 which is absurd.

Lemma 5.1
For every null nowhere-zero vector field Z,

LZg|TH = 0 .

Proof. As LZ is a tensor derivation, for X,Y ∈ ΓH,

LZg(X,Y ) = LZ(g(X,Y ))− g(LZX,Y )− g(X,LZY )

= g(∇ZX,Y ) + g(X,∇ZY )− g([Z,X], Y )− g(X, [Z, Y ])

= g(∇XZ, Y ) + g(X,∇Y Z)

= 0

because ∇XZ = ωZ(X)Z and ∇Y Z = ωZ(Y )Z are null vector fields.

Proposition 5.3

Let p, p′ ∈ H such that there is z, z′ ∈ (−η, η) and X in the open ball centered in 0 of radius
ε > 0 in Hϕ(p,z) such that ϕ(p′, z′) = exp(ϕ(p, z), X). Then there is a smooth function φ such that
φ(p, p′, ·) : R+ −→ R+ is strictly increasing, and such that for every ρ ≥ 0,∣∣∣∣∣

∫ ρ

ϕp

ωZ −
∫ φ(p,p′,ρ)

ϕp′

ωZ

∣∣∣∣∣ ≤ 2Kε+ 2η‖ωZ(Z)‖L∞(H)

where K is a global constant independent of p and p′.
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Proof. Denote p0 = ϕ(p, z) and p1 = ϕ(p′, z′). By definition, the horizontal geodesic

α : [0, 1] −→ U
t 7−→ exp(p0, tX)

satisfies α(0) = p0 and α(1) = p1. Denote αρ : [0, 1] −→ H the ρ-horizontal lift of α, given
by Proposition 5.2. More precisely, as seen in the proof of Proposition 5.2, we have αρ(t) =
ϕ(α(t), fρ(t)) where fρ : [0, 1] −→ R is the unique solution of the ODE{

(fρ)
′(t) = −Z∗(d(ϕfρ(t))αρ(t)((αρ)

′(t)))

fρ(0) = ρ .

Let φ be the function defined on a neighbourhood of (p, p′) times R+ by

φ(p, p′, ρ) = fρ(1) .

Notice that by ODE theory, φ is smooth. Moreover, by construction,

ϕ(p1, φ(p, p′, ρ)) = αρ(1) .

Now, define the map
R : [0, 1]× R+ −→ H

(s, ρ) 7−→ αρ(s)
.

We can compute
∂R

∂ρ
=
∂fρ(1)

∂ρ
Z(αρ(s)) ∈ RZ\{0}

∂R

∂s
= (αρ)

′(s) ∈ H\{0} .

Notice that ∂fρ(0)/∂ρ = 1, thus reducing ε > 0 if necessary, ∂fρ(1)/∂ρ > 0, in which case R is
a smooth immersion, called the Ribbon, and in which case φ(p, p′, ·) is strictly increasing. Denote
Rρ = R([0, 1]× [0, ρ]). By definition, Rρ is an immersed corner submanifold of H, with boundary
the union of the null curves ϕp0([0, ρ]), ϕp1([0, φ(p0, p, ρ)]), and of the horizontal curves α and αρ.

Lemma 5.2 ∫
Rρ

dωZ = 0 .

Proof. In fact, dωZ is zero on the tangent bundle of Rρ. Indeed, Rρ is 2-dimensional and tangent
to the null direction. Let x ∈ Rρ and split TxRρ = RZ(x) + RY . Then for X1 = a1Z(x) + b1Y ,
X2 = a2Z(x) + b2Y ∈ TpRρ, we have by antisymmetry

dω(X1, X2) = (a1b2 − b1a2)dω(Z(x), Y ) = 0

because ω is null-closed by Section 4.

As proved in [Lee83, Th 16.25], Stokes’ theorem holds for corner manifolds. Thus,∫ ρ

ϕp0

ωZ =

∫ φ(p,p′,ρ)

ϕp1

ωZ +

∫ 1

0

ωZ((αρ)
′(s))ds−

∫ 1

0

ωZ((α)′(s))ds . (5.1)

The following result is a fundamental property of horizontal distributions.
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5 The ribbon argument

Lemma 5.3

There is a global constant K > 0 such that for every horizontal curve α : [0, 1] −→ H,∣∣∣∣∫ 1

0

ωZ(α′(s))ds

∣∣∣∣ ≤ K sup
s∈[0,1]

√
g(α′(s), α′(s)) .

Proof. As shown in Proposition A.3, the unitary subbundle U of the horizontal distribution H is
compact, on which ωZ is a continuous function. Thus, there is a constant K > 0 such that for
X ∈ U , ωZ(X) ≤ K.
Then, if X ∈ H is any horizontal vector, ωZ(X) ≤ K

√
g(X,X). This shows that∣∣∣∣∫ 1

0

ωZ(α′(s))ds

∣∣∣∣ ≤ ∫ 1

0

|ωZ(α′(s))|ds

≤ K
∫ 1

0

√
g(α′(s), α′(s))ds

≤ K sup
s∈[0,1]

√
g(α′(s), α′(s)) .

Notice that for ρ ≥ 0, by definition of αρ,

α′ρ(s) = d(ϕfρ(t))(α
′(t)) + (fρ)

′(t)Z(ϕ(α(t), fρ(t))) = π(d(ϕfρ(t))(α
′(t)))

where π is the projection TH = H ⊕ RZ −→ H. This shows that

g(α′ρ(s), α
′
ρ(s)) = g(d(ϕfρ(t))(α

′(t)),d(ϕfρ(t))(α
′(t))) . (5.2)

Lemma 5.1 shows that for any v ∈ TH, the function

r 7−→ g(d(ϕr)(v),d(ϕr)(v))

is constant. Indeed, as LZg = 0 on H by Lemma 5.1,

d

dr
[g(d(ϕr)(v),d(ϕr)(v))] = 2g(LZd(ϕr)(v),d(ϕr)(v)) = 0 .

Applying this result with v = α′(t) and using (5.2) shows that for every ρ ≥ 0 and s ∈ [0, 1],

g(α′ρ(s), α
′
ρ(s)) = g(α′(s), α′(s)) = g(α′(0), α′(0))

where the second equality holds because α is a horizontal geodesic, thus

d

ds
[g(α′(s), α′(s))] = 2g(∇′αα′(s), α′(s)) = 2g(π(∇′αα′(s)), α′(s)) = 0 .

Recall that by definition of the horizontal exponential map, α′(0) = X where X is in the ball of
radius ε. Thus, g(α′ρ(s), α

′
ρ(s)) ≤ ε2.

This fact, Equation (5.1) and Lemma 5.3 combined show that∣∣∣∣∣
∫ ρ

ϕp0

ωZ −
∫ φ(p,p′,ρ)

ϕp1

ωZ

∣∣∣∣∣ ≤ 2Kε .

We can now conclude :∣∣∣∣∣
∫ ρ

ϕp

ωZ −
∫ φ(p,p′,ρ)

ϕp′

ωZ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ ρ

ϕp0

ωZ −
∫ φ(p,p′,ρ)

ϕp1

ωZ

∣∣∣∣∣+

∣∣∣∣∣
∫ z

ϕp

ωZ

∣∣∣∣∣+

∣∣∣∣∣
∫ z′

ϕp′

ωZ

∣∣∣∣∣
≤ 2Kε+ 2η‖ωZ(Z)‖L∞(H) .
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Denote φ : X ×R+ −→ R+ the function introduced in the previous proof. It is defined on X ×R+,
where X ⊆ H2 is the set of pairs (p, p′) as in Proposition 5.3. We saw in the previous proof that
φ is smooth, as φ(p, p′, ρ) is the end point of an ODE with parameters depending smoothly on
p, p′, ρ.

Proposition 5.4
For every p0 ∈ H, there is a constant C > 0, an open neighbourhood U ⊆ H of p0, such that for
every p, p′ ∈ U , ∣∣∣∣∣

∫ ρ

ϕp

ωZ −
∫ φ(p,p′,ρ)

ϕp′

ωZ

∣∣∣∣∣ ≤ C
This result, which contains the essence of the ribbon argument, will be used in the following section
to show future incompleteness of the future generators of H.

Proof. Let ε > 0 and η > 0 be as in Proposition 5.1 and denote U the associated cylinder open
neighbourhood of p0. Let C = 2Kε+2η‖ωZ(Z)‖L∞(H). Then by definition of the map ψp0,(ei), for
every p, p′ ∈ U , the pair (p, p′) satisfies the hypothesis of Proposition 5.3. Indeed, there is X = xiei
where (xi) ∈ B(0, ε) and z, z′ ∈ (−η, η) such that p′ = ϕ(exp(ϕ(p, z), X), z′). Hence the result,
applying Proposition 5.3.

5.2 Future-incompleteness of the null generators
Denote I the set of points p ∈ H such that the null generators leaving p are future-incomplete.
As H is non-degenerate, I 6= ∅. Let Z be a future-directed null nowhere-zero vector field on H
tangent to H, and denote LZ : H −→ R ∪ {∞} the affine length associated to Z. Then I is the
set of points p ∈ H such that LZ(p) < ∞. As before, we denote ϕ : H × R −→ H the flow of Z
and for p ∈ H, the curve ϕp := ϕ(p, · ) : R −→ H.
Proposition 5.5
Let X be a future-directed smooth null nowhere-zero vector field on H tangent to H, and denote
ϕX its flow. For p ∈ H, the affine length LX(p) of the null generator γ leaving p in t = 0 with
velocity γ′(0) = X(p) is given by the formula

LX(p) =

∫ ∞
0

exp

(∫ ρ

ϕXp

ωX

)
dρ .

Proof. Denote ψ : [0,+∞) −→ [0, LX(p)) the reparametrization of ϕXp as a geodesic, i .e. such that
γ ◦ ψ = ϕXp . We have ψ′(t)γ′(ψ(t)) = X(ϕXp (t)). Denote φ = 1/ψ′. The geodesic equation reads

0 = ∇γ′γ′ = φ(φ′ + φ ωX(X))X

thus

φ(ρ) = exp

(
−
∫ ρ

0

ωX(X(ϕXp (s)))ds

)
= exp

(
−
∫ ρ

ϕXp

ωX

)
.

This shows

ψ(t) =

∫ t

0

exp

(∫ ρ

ϕXp

ωX

)
dρ

hence the result, taking the limit t→ +∞.

The next result shows how the surface gravity changes when using a different Z.
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5 Future-incompleteness of the null generators

Proposition 5.6
For every smooth strictly positive function f : H −→ R∗+,

ωfZ = ωZ + d(log f) and ωfZ(fZ) = fωZ(Z) + ∂Zf .

Proof. As d(log f) = df/f , the second equation follows directly from the first one. By definition,

ωfZ(X)fZ = ∇XfZ
= (∂Xf)Z + f∇XZ

=

(
∂Xf

f
+ ωZ(X)

)
fZ

= (d(log f)(X) + ωZ(X))fZ

hence the result.
Lemma 5.4

For every p0 ∈ I,
∫
ϕp0

ωZ = −∞ .

Proof. As LZ(p0) <∞, the function

ρ 7−→ exp

(∫ ρ

ϕp0

ωZ

)
= exp

(∫ ρ

0

ωZ(Z(ϕ(p0, z)))dz

)
is integrable on R+. A classical result that can be found for example in [Les10] shows that for
almost every x > 0,

exp

(∫ nx

0

ωZ(Z(ϕ(p0, z)))dz

)
−−−−→
n→∞

0 .

Thus, there is x > 0 such that ∫ nx

0

ωZ(Z(ϕ(p0, z)))dz −−−−→
n→∞

−∞ .

Now, if ρ ≥ 0, write the unique decomposition

ρ = [ρ]x + η(ρ)

with [ρ]x ∈ Nx and η(ρ) ∈ [0, x) (if x = 1, this is the classical decomposition with the integer and
fractional parts of ρ). We can compute∫ ρ

0

ωZ(Z(ϕ(p0, z)))dz =

∫ [ρ]x

0

ωZ(Z(ϕ(p0, z)))dz +

∫ [ρ]x+η(ρ)

[ρ]x

ωZ(Z(ϕ(p0, z)))dz −−−→
ρ→∞

−∞

as by choice of x, ∫ [ρ]x

0

ωZ(Z(ϕ(p0, z)))dz −−−→
ρ→∞

−∞

and as ∣∣∣∣∣
∫ [ρ]x+η(ρ)

[ρ]x

ωZ(Z(ϕ(p0, z)))dz

∣∣∣∣∣ ≤ x‖ωZ(Z)‖L∞(H)

is bounded, because ωZ(Z) is bounded on H by compactness.

We use the ribbon argument to for the next proposition.
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5 Future-incompleteness of the null generators

Proposition 5.7

For every p ∈ H,
∫
ϕp

ωZ = −∞ .

Proof. Define A as the set of points p ∈ H such that
∫
ϕp
ωZ = −∞. As H is non-degenerate, by

Lemma 5.4, we know that A 6= ∅. Let us use the Ribbon argument to show that A is open and
closed in H.
Let p0 ∈ A. Denote φ the function defined in Section 5.1 and U the open set given by Proposition
5.4. Let p ∈ U . We can write∫ ρ

ϕp0

ωZ = F (p0, p, ρ) +

∫ φ(p0,p,ρ)

ϕp

ωZ (5.3)

where F is a bounded function. If ρ 7−→ φ(p0, p, ρ) didn’t diverge to +∞, there would be a bounded
sequence φ(p0, p, ρn) with ρn −→ +∞, but then the sequence

∫ ρn
ϕp0

ωZ would be bounded which
would is absurd as p0 ∈ A. Thus, ρ 7−→ φ(p0, p

′, ρ) diverges to +∞. As F is bounded, taking the
limit ρ→∞ of (5.3) shows that

∫
ϕp
ωZ = −∞, i .e. p ∈ A. This shows that A is open in H.

Let p ∈ A and let (pn)n≥1 ⊂ A be a sequence converging to p. Let U the open neighbourhood of p
given by Proposition 5.4. Let N ∈ N be large enough such that p0 := pN ∈ U . Then we can write
again ∫ ρ

ϕp0

ωZ = F (p0, p, ρ) +

∫ φ(p0,p,ρ)

ϕp

ωZ (5.4)

where F is a bounded function. The exact same reasoning as above applies : if ρ 7−→ φ(p0, p, ρ)
didn’t diverge to +∞, there would be a bounded sequence φ(p0, p, ρn) with ρn −→ +∞, but then
the sequence

∫ ρn
ϕp0

ωZ would be bounded which would is absurd as p0 ∈ A. Thus, ρ 7−→ φ(p0, p, ρ)

diverges to +∞. As F is bounded, taking the limit ρ→∞ of (5.3) shows that
∫
ϕp
ωZ = −∞, i .e.

p ∈ A.
Thus, A 6= ∅ is open and closed in H which is connected i .e. A = H, hence the result.

Lemma 5.5
Every p0 ∈ H admits an open neighbourhood U and a constant C > 0 such that for every ρ ≥ C,
and for every p ∈ U , ∫ ρ

ϕp

ωZ < 0 .

Proof. Let U the open neighbourhood of p0 given by Proposition 5.4. We can write∫ ρ

ϕp

ωZ = F (p, p0, ρ) +

∫ φ(p,p0,ρ)

ϕp0

ωZ .

Where F is bounded. Let R > 0 such that |F | ≤ R. We know that ρ 7−→ φ(p, p0, ρ) diverges to
+∞, otherwise there would be a bounded sequence

∫ ρn
ϕp

ωZ with ρn → +∞ which is absurd by
Proposition 5.7. Moreover, for p ∈ K,∫ ρ

ϕp

ωZ ≤
∫ φ(p,p0,ρ)

ϕp0

ωZ +R . (5.5)

By Proposition 5.7, there is a constant C0 > 0 such that for every ρ ≥ C0,∫ ρ

ϕp0

ωZ < −R .
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5 Future-incompleteness of the null generators

Let C := C0 + 1. As φ(p0, p0, C) = C > C0, by continuity, for p in an open neighbourhood V ⊆ U
of p0, φ(p, p0, C) > C0. Then, as ρ 7−→ φ(p, p0, ρ) is increasing, by (5.5), for every ρ > C and every
p ∈ V, ∫ ρ

ϕp

ωZ ≤
∫ φ(p,p0,ρ)

ϕp0

ωZ +R < −R+R = 0 .

Hence the result, with the neighbourhood V of p0 and the constant C > 0.

The next proposition is a direct consequence of Lemma 5.5 and of the compactness of H.
Proposition 5.8
There is a constant C > 0 such that for every p ∈ H and ρ ≥ C,∫ ρ

ϕp

ωZ < 0 .

Proof. For p ∈ H, denote Up and Cp the open neighbourhood of p and the constant given by Lemma
5.5. By compactness, let (Upi)1≤i≤m be a subcover of H, and define C = max1≤i≤m Cpi > 0. Then
if p ∈ Upi , as C > Cpi , if ρ ≥ C,

∫ ρ
ϕp
ωZ < 0. Hence the result, as H =

⋃
1≤i≤m Upi .

Proposition 5.9

There is a future-directed null nowhere-zero vector field X on H such that ωX(X) < 0.

Proof. Define the smooth strictly positive function g : H −→ R∗+ by

g(p) =

∫ C

0

exp

(∫ ρ

ϕp

ωZ

)
dρ

where C > 0 is the constant given by Proposition 5.8. We will show that the vector field X := gZ
satisfies ωX(X) < 0 by a simple computation. By Proposition 5.6,

ωX(X) = gωZ(Z) + ∂Zg .

Moreover, a classical theorem for the differentiation under the integral sign on a compact interval
of a smooth function shows that

∂Zg(p) =

∫ C

0

∂Z exp

(∫ ρ

ϕp

ωZ

)
dρ

=

∫ C

0

∂Z

[∫ ρ

ϕp

ωZ

]
exp

(∫ ρ

ϕp

ωZ

)
dρ

=

∫ C

0

[∫ ρ

0

∂Z [ωZ(Z(ϕ(p, z)))] dz

]
exp

(∫ ρ

ϕp

ωZ

)
dρ .

Moreover, by definition,

∂Z [ωZ(Z(ϕ(p, z)))] =
d

dt
[ωZ(Z(ϕ(ϕ(p, t), z)))]t=0 =

d

dt
[ωZ(Z(ϕ(p, t+ z)))]t=0 =

d

dz
[ωZ(Z(ϕ(p, z)] .
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Thus,

∂Zg(p) =

∫ C

0

(ωZ(Z(ϕ(p, ρ)))− ωZ(Z(p))) exp

(∫ ρ

ϕp

ωZ

)
dρ

=

∫ C

0

ωZ(Z(ϕ(p, ρ))) exp

(∫ ρ

ϕp

ωZ

)
dρ− ωZ(Z(p))g(p)

=

∫ C

0

d

dρ

[
exp

(∫ ρ

ϕp

ωZ

)]
dρ− ωZ(Z(p))g(p)

= exp

(∫ C

ϕp

ωZ

)
− 1− ωZ(Z(p))g(p) .

This shows that for every p ∈ H,

ωX(X)p = exp

(∫ C

ϕp

ωZ

)
− 1 < 0

as, by the choice of C,
∫ C

ϕp

ωZ < 0.

Corollary 5.1
The null generators of H are future-incomplete.

Proof. LetX be the vector field given by Proposition 5.9. It is enough to show that the affine length
LX(p) of the null geodesic leaving any p ∈ H with initial velocity X(p) is finite. As ωX(X) < 0 is
continous on the compact set H, there is a constant −K < 0 such that ωX(X) ≤ −K (notice that
−K is simply the supremum for p ∈ H of the continuous function exp

(∫ C
ϕp
ωZ

)
− 1).

We can now compute as usual, by Proposition 5.5,

LX(p) =

∫ ∞
0

exp

(∫ ρ

0

ωX(X(ϕX(p, z)))dz

)
dρ ≤

∫ ∞
0

e−Kρ dρ =
1

K
<∞ .

5.3 The homogeneity vector field
Let H be a non-degenerate compact Cauchy horizon. In Section 5.2, we found a smooth null
nowhere-zero vector field n on H such that, on H, κ := ω(n) < −K, where K > 0 is a constant.
Denote ω := ωn and n∗ the one-form on H such that n∗(n) = 1 and n∗|H = 0. Corollary 5.1 shows
that for every p ∈ H, the affine length Λ(p) of the null geodesic λ such that λ(0) = p, λ′(0) = n(p)
is finite. We saw that, denoting ϕ the flow of n, the function Λ : H −→ R∗+ is defined by

Λ(p) =

∫ ∞
0

exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
dρ .

The goal of this section is to show that the affine length function is smooth. This was the second
step of the proof strategy introduced in Section 3.3 to show the existence of a pre-Killing field on
H. The general proof that Λ is C k goes by induction and is the object of Appendix C, but the
first two steps are presented here as well, in order to clarify the general proof. As Λ is defined by
an integral, to show its regularity we find locally uniform dominations of the integrated functions.
We also show that Λ satisfies a PDE, that proves its smoothness in the vacuum case.
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5 The homogeneity vector field

For ρ ∈ R, denote ϕρ = ϕ( · , ρ) : H −→ H. In this section, N will denote a null vector field
transverse to H such that N⊥ kerω and such that g(n,N) = −1, as in Proposition 4.3. We extend
N geodesically on a neighbourhood of H, and we extend n on that same neighbourhood with the
flow of N such that [N,n] = 0. We also extend κ such that ∂Nκ = 0.

Lemma 5.6
When restricted to TH,

Lnω = dκ .

Proof. By Cartan’s magic formula,

Lnω = d(ω(n)) + dω(n, · ) = dκ

because, as seen in Section 4, ω is null-closed.

The following result will be used to show the regularity of Λ.

Lemma 5.7

There is a constant C > 0 such that for every (p,X) ∈ TH and ρ ≥ 0,

|ω(dϕρ(X))| ≤ C
(√

g(X,X)(1 + ρ‖κ‖L∞(H)) + |λ|
)

where λ is the coordinate of X along n in the decomposition TH = Rn⊕H.

In other words, the function ρ 7−→ ω(dϕρ(X)) is bounded by an affine function.

Proof. Let (p,X) ∈ TH. For every ρ ≥ 0, there is Xρ
H ∈ H and λ(ρ), smooth in ρ, such that

dϕρ(X) = Xρ
H + λ(ρ)n(ϕ(p, ρ)) . (5.6)

Thus, we have
ω(dϕρ(X)) = ω(Xρ

H) + λ(ρ)ω(n)ϕ(p,ρ) .

By Proposition A.3, the unitary subbundle of H is compact. Thus, there is C > 0 such that for
every Y ∈ H,

|ω(Y )| ≤ C
√
g(Y, Y ) .

As Ln(dϕρ(X)) = 0 and Ln(λ(ρ)n(ϕ(p, ρ))) = λ′(ρ)n(ϕ(p, ρ)), Equation (5.6) and the definition
of n∗ gives

λ′(ρ) = −n∗(LnXρ
H) .

Moreover, as n∗(Xρ
H) = 0 on ϕp, we have

0 =
d

dρ
[n∗(Xρ

H)]

= Ln[n∗(Xρ
H)]

= n∗(LnXρ
H) + Lnn∗(Xρ

H)

= −λ′(ρ) + Lnn∗(Xρ
H)

which shows that
λ′(ρ) = Lnn∗(Xρ

H) .

24



5 The homogeneity vector field

Define the smooth one-form β = Lnn∗ on H, such that λ′(ρ) = β(Xρ
H). Once again, as the unitary

subbundle of H is compact, changing C > 0 if necessary, for every Y ∈ H, |β(Y )| ≤ C
√
g(Y, Y ).

Thus, as n is normal to TH,

|λ′(ρ)| ≤ C
√
g(Xρ

H , X
ρ
H) = C

√
g(dϕρ(X),dϕρ(X)) .

Moreover, as Ln[dϕρ(X)] = 0, and with Lemma 5.1, we get

d

dρ
[g(dϕρ(X),dϕρ(X))] = Ln(g(dϕρ(X),dϕρ(X)))

= Lng(dϕρ(X),dϕρ(X)) + 2g(Lndϕρ(X),dϕρ(X))

= 0 .

This shows that g(dϕρ(X),dϕρ(X)) = g(X,X), thus |λ′(ρ)| ≤ C
√
g(X,X), and finally,

|λ(ρ)| ≤ |λ(0)|+ Cρ
√
g(X,X) .

To conclude, using the fact that changing C > 0 if necessary, |ω(n)ϕ(p,ρ)| < C, we get as wished

|ω(dϕρ(X))| ≤ |ω(Xρ
H)|+ |λ(ρ)||ω(n)ϕ(p,ρ)| ≤ C

√
g(X,X)(1 + ρ|ω(n)ϕ(p,ρ)|) + |λ(0)ω(n)ϕ(p,ρ)| .

Proposition 5.10

The function Λ is C 1 and satisfies, for p ∈ H and X ∈ TpH,

dΛp(X) =

∫ ∞
0

ω(dϕρ(X)) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
dρ− ω(X)Λ(p) .

Proof. Let γ : I −→ H be curve such that γ(0) = p, γ′(0) = X. For every ρ ≥ 0, the function

Fρ : s 7−→ exp

(∫ ρ

0

κ(ϕ(γ(s), z))dz

)
is C 1, with

F ′ρ(0) =

(∫ ρ

0

∂κ(ϕ(γ(s), z))

∂s
dz

)
exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
.

More precisely, we have
∂κ(ϕ(γ(s), z))

∂s
= dκ(dϕz(X)) .

Let us show that

dκ(dϕz(X)) =
dω(dϕz(X))

dz
. (5.7)

As Ln[dϕz(X)] = 0, we have

dω(dϕz(X))

dz
= Ln [ω(dϕz(X))] = Lnω(dϕz(X)) .

Hence (5.7) by Lemma 5.6. Thus,

F ′ρ(0) = (ω(dϕρ(X))− ω(X)) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
.
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5 The homogeneity vector field

By Lemma 5.7, and as κ < −K, there is C > 0 and λ ∈ R such that

|F ′ρ(0)| ≤
(
C
(√

g(X,X)(1 + ρ‖κ‖L∞(H)) + |λ|
)

+ ‖κ‖L∞(H)

)
e−Kρ . (5.8)

Extending X to a vector field on H, (5.8) shows that there are constants µ, ν > 0 such that for
every p′ ∈ H,

∂X

[
exp

(∫ ρ

0

κ(ϕ(p′, z))dz

)]
≤ (µρ+ ν)e−Kρ .

This domination function of ρ is integrable on [0,+∞) and independant of p. Thus, a classic theo-
rem for the differentiation under the integral sign shows that Λ is C 1, and the formula announced

dΛp(X) =

∫ ∞
0

∂X

[
exp

(∫ ρ

0

κ(ϕ(p, z))dz

)]
dρ =

∫ ∞
0

ω(dϕρ(X)) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
dρ−ω(X)Λ(p) .

Corollary 5.2

The function Λ is C 1, smooth along the null generators of H, and satisfies

1 + κΛ + ∂nΛ = 0 .

Proof. With Proposition 5.10 it is enough to check that 1 + κΛ + ∂nΛ = 0. By Proposition 5.10,
as dϕρ(n(p)) = n(ϕ(p, ρ)),

∂nΛ(p) =

∫ ∞
0

ω(dϕρ(n)) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
dρ− ω(n(p))Λ(p)

=

∫ ∞
0

κ(ϕ(p, ρ)) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
dρ− κ(p)Λ(p)

=

∫ ∞
0

d

dρ

[
exp

(∫ ρ

0

κ(ϕ(p, z))dz

)]
dρ− κ(p)Λ(p)

= exp

(∫ +∞

0

κ(ϕ(p, z))dz

)
− 1− κ(p)Λ(p)

= −1− κ(p)Λ(p)

as wished.

The following results will be used to show that Λ is actually C 2.

Proposition 5.11

There is a smooth (0, 2)-type tensor µ on H such that for every X,Y ∈ TH,

R(n,X)Y = µ(X,Y )n .

Moreover,
µ(X,Y )− µ(Y,X) = −dω(X,Y ) ,

µ(n, · ) = µ(· , n) = 0, and µ is independant of the null non-zero vector n chosen.

Proof. For the existence of µ, it is enough to show that R(n,X)Y is null. Let W ∈ TH. By the
classic symmetry Rabcd = Rcdab of the curvature tensor,

g(W,R(n,X)Y ) = g(X,R(Y,W )n) = g(X,n)dω(Y,W ) = 0 .
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5 The homogeneity vector field

Thus R(n, Y )X is null, hence proportional to n by Proposition 2.1. The equation

µ(X,Y )− µ(Y,X) = −dω(X,Y )

is a simple consequence of the first Bianchi identity Rabcd+Racdb+Radbc = 0. The last affirmations
come from the fact that R(n,X)n = dω(n,X)n = 0 as ω is null-closed, and from the fact that the
equation defining µ is invariant by the multiplication of n by a scalar.

Let η be the tensor of type (0, 2) defined by, for X,Y ∈ TH,

η(X,Y ) = ∇Xω(Y ) + ω(X)ω(Y ) + µ(X,Y ) .

Lemma 5.8
For every X,Y ∈ TH,

(Ln∇)(X)Y = η(X,Y )n .

Proof. The proof is based on results about the Lie derivative of the connection that can be found
in [Yan55, p. 9]. It is defined as the (2, 1)-type tensor

(Ln∇)(X)Y := Ln[∇XY ]−∇LnXY −∇XLnY

and it satisfies

(Ln∇)(X)Y = R(n,X)Y + iY∇X∇n (5.9)

where iY is the contraction with Y . The announced formula comes from (5.9) and the following
calculation :

iY∇X∇n = iY∇X [ω · n]

= iY [(∇Xω) · n+ ω · ∇Xn]

= ((∇Xω)(Y ) + ω(X)ω(Y ))n .

Proposition 5.12

The function Λ is C 2 and satisfies, for X,Y ∈ ΓH,

∇X∇Y Λ(p) =

∫ ∞
0

[∇Xρω(Y ρ) + ω(∇ρXY
ρ) + (ω(Xρ)− ω(X))(ω(Y ρ)− ω(Y ))] exp

(∫ ρ

ϕp

κ

)
dρ

− (∇Xω(Y ) + ω(∇XY ))Λ(p)

where Xρ := dϕρ(X(p)), Y ρ := dϕρ(Y (p)).

Proof. Let p ∈ H, and let X,Y be smooth vector fields on H. We need to show that ∂Y ∂XΛ exists
and is continuous. We saw in Proposition 5.10 that Λ is C 1 and that

∂XΛ(p) =

∫ ∞
0

ω(dϕρ(X(p))) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
dρ− ω(X(p))Λ(p) .

The term −ω(X)Λ is C 1, thus we only need to show that

∂Y

[
p 7−→

∫ ∞
0

ω(dϕρ(X(p))) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
dρ

]
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exists and is continuous. Define

Fρ(p) = ω(dϕρ(X(p))) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
.

For every ρ ≥ 0, Fρ is C 1, and we can compute

∂Y Fρ(p) = ∇Y [p 7−→ ω(dϕρ(X(p)))] exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
+ω(dϕρ(X(p)))∇Y

[
exp

(∫ ρ

0

κ(ϕ(p, z))dz

)]
We saw in Proposition 5.10 that

∇Y
[
exp

(∫ ρ

0

κ(ϕ(p, z))dz

)]
= (ω(dϕρ(Y (p)))− ω(Y (p)) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
.

Define Xρ = dϕρ(X(p)) and Y ρ = dϕρ(Y (p)). Then

∂Y Fρ(p) = (∇Y ρ [ω(Xρ)] + ω(Xρ)(ω(Y ρ)− ω(Y ))) exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
.

To show that Λ is C 2, we only need to show that this expression is dominated by an integrable
function independant of p in a neighbourhood. Lemma 5.7 shows that the term ω(Xρ)(ω(Y ρ) −
ω(Y )) is dominated by a polynomial in ρ with continuous (thus bounded) coefficients. We also
know that

exp

(∫ ρ

0

κ(ϕ(p, z))dz

)
≤ e−Kρ

withK > 0. Thus we only need to show that the term∇Y ρ [ω(Xρ)] is dominated by a polynomial in
ρ with coefficients continuous with p. Like in the demonstration of Lemma 5.7, write the splitting

Xρ = λX(ρ)Z +Xρ
H

Y ρ = λY (ρ)Z + Y ρH

where Xρ
H , Y ρH ∈ H. We saw that λX and λY are bounded by affine functions of ρ with coefficients

continuous with p. Moreover,

∇Y ρ [ω(Xρ)] = (∇Y ρω)(Xρ) + ω(∇Y ρXρ)

and we can expand

(∇Y ρω)(Xρ) = (∇Y ρHω)(Xρ
H) + λY (ρ)(∇nω)(Xρ) + λX(ρ)(∇Y ρHω)(n) + λX(ρ)λY (ρ)(∇nω)(n) .

The term (∇Y ρHω)(Xρ
H) is a bilinear form evaluated on (Xρ

H , Y
ρ
H), thus by continuity and com-

pactness of the unitary subbundle of (H ⊕ H, gH ⊕ gH), there is a global constant M > 0 such
that

|(∇Y ρHω)(Xρ
H)| ≤M

√
g(Xρ

H , X
ρ
H)g(Y ρH , Y

ρ
H) = S

√
g(X(p), X(p))g(Y (p), Y (p)) .

Likewise, the terms (∇nω)(Xρ) and (∇Y ρHω)(n) are one-forms evaluated on Xρ
H and Y ρH , thus

are bounded by global constants times
√
g(X(p), X(p) and

√
g(Y (p), Y (p). Finally, the term

λX(ρ)λY (ρ)(∇nω)(n) is bounded by a quadratic function with coefficients continuous with p. Thus,
we only need to take care of the term ω(∇Y ρXρ).
Let (eµ) = e1, ... , en−1 be an orthonormal basis of Hp. Define, for ρ ≥ 0, eµ(ρ) = dϕρ(eµ). Then
(e1(ρ), ... , en−1(ρ), n(ϕp(ρ))) is a basis of Tϕp(ρ)H. Thus we can write

∇Y ρXρ =

n−1∑
µ=1

xµ(ρ)eµ(ρ) + λ(ρ)n(ϕ(p, ρ)) . (5.10)
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5 The homogeneity vector field

As Lng = 0 by Lemma 5.1, we can compute

d

dρ
[g(eµ(ρ), eν(ρ))] = g(Lneµ(ρ), eν(ρ)) + g(eµ(ρ),Lneν(ρ)) = 0

d

dρ
[g(eµ(ρ), n(ϕ(p, ρ))] = g(Lneµ(ρ), Z(ϕ(p, ρ))) + g(eµ(ρ),Lnn(ϕ(p, ρ))) = 0

thus g(eµ(ρ), eν(ρ)) = δµν and g(eµ(ρ), n(ϕp(ρ)) = 0. This shows that xµ(ρ) = g (∇Y ρXρ, eµ(ρ)).
We can thus compute

dxµ

dρ
= g(Ln[∇Y ρXρ], eµ(ρ)) = 0

as Lemma 5.8 shows that Ln[∇Y ρXρ] = (Ln∇)(Xρ)Y ρ = η(Xρ, Y ρ)n is proportional to n, because
LnXρ = LnY ρ = 0. Thus, xµ is constant. Now, taking the Lie derivative of (5.10) gives

Ln[∇Y ρXρ] = λ′(ρ)n(ϕp(ρ))

thus, by Lemma 5.8,

λ′(ρ) = n∗(Ln[∇Y ρXρ])

= η(Xρ, Y ρ)

= µ(Xρ, Y ρ) + (∇Y ρω)(Xρ) + ω(Xρ)ω(Y ρ) .

Moreover, we saw that the term (∇Y ρω)(Xρ) + ω(Xρ)ω(Y ρ) was bounded by a polynomial in ρ
with coefficients continuous with p. As we saw in Proposition 5.11,

µ(Xρ, Y ρ) = µ(Xρ
H , Y

ρ
H)

and the bilinear form µ is continuous, thus bounded on the unitary subbundle of (H⊕H, gH⊕gH)
by compactness. This shows that there is a global constant S > 0 such that

µ(Xρ
H , Y

ρ
H) ≤ S

√
g(Xρ

H , X
ρ
H)g(Y ρH , Y

ρ
H) = S

√
g(X(p), X(p))g(Y (p), Y (p)) .

This shows that λ′, hence λ, by integrating, is bounded by a polynomial in ρ with continuous
coefficients. We can now conclude that

ω(∇Y ρXρ) =

n−1∑
µ=1

xµω(eµ(ρ)) + λ(ρ)κ(ϕ(p, ρ))

is bounded by a polynomial in ρ with continuous coefficients, because λ is, because the xµ are
constants, because the terms ω(eµ(ρ)) are bounded by affine functions of ρ, as shown in Lemma 5.7,
and because κ is bounded. To conclude, a classic theorem for the differentiation under the integral
sign shows that Λ is C 2, and that we can calculate the second derivative of Λ by differentiating
under the integral sign, which directly gives the announced formula thanks to Proposition 5.10.

The following result shows a link between the tensor µ and the geometry of H, and will be used
to show that Λ satisfies an elliptic partial differential equation in the vacuum case.

Proposition 5.13
We have the identity

Lnµ =
1

2
LnRic|H .
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5 The homogeneity vector field

Proof. Let (ei)2≤i≤n be a local orthonormal basis of kerωp. By definition of the Ricci tensor, for
X,Y ∈ TpH,

Ric(X,Y ) = Tr

(
TpM −→ TpM
W 7−→ R(W,Y )X

)
= −g(R(n, Y )X,N)− g(R(N,Y )X,n) +

n∑
i=2

g(R(ei, Y )X, ei)

= −g(R(n, Y )X,N)− g(R(n,X)Y,N) +

n∑
i=2

g(R(ei, Y )X, ei)

= µ(X,Y ) + µ(Y,X) +

n∑
i=2

R(ei, Y,X, ei)

using the symmetries of the curvature tensor Rabcd. Extend ei and X,Y such that [n,X] = [n, Y ] =
0, and such that (ei) remains an orthonormal basis of kerω. It is enough that ei satisfies the ODE

Lnei = Lng(N, ei)n .

Then, by Proposition 5.11 and Lemma 5.6, and as the exterior derivative and the Lie derivative
commute,

Lnµ(X,Y ) = Lnµ(Y,X) + dLnω(X,Y )

= Lnµ(Y,X) + d2κ(X,Y )

= Lnµ(Y,X) .

because d2 = 0. Moreover, as Lnei is proportional to n,

Ln[R(ei, Y,X, ei)] = LnR(ei, Y,X, ei) .

Thus,

LnRic(X,Y ) = 2Lnµ(X,Y ) +

n∑
i=2

LnR(ei, Y,X, ei) . (5.11)

Moreover, in local coordinates (xµ)0≤µ≤n such that N = ∂0, n = ∂1 and ∂2, ... , ∂n ∈ TH , as shown
in [LD69, Eqn. (2.6)], denoting α = Lng,

LnR`ijk =
g`m

2
[(αkm;i + αmi;k − αki;m);j − (αkm;j + αmj;k − αkj;m);i] .

Thus,

LnRabcd = (Lnga`)R`bcd +
1

2
(αda;b + αab;d − αdb;a);c −

1

2
(αda;c + αac;d − αdc;a);b

Suppose that a, b, c, d ≥ 1. Then for ` ≥ 1, by Lemma 5.1, Lnga` = 0. Thus,

(Lnga`)R`bcd = −(Lnga0)R0
bcd = 0

because R0
bcd is the coordinate on N of R(∂b, ∂c)∂d in the basis (∂µ)0≤µ≤n, but R(∂b, ∂c)∂d ∈ TH

as H is totally geodesic. Moreover, each term of the form αij;k;l = ∂k∂l[Lng(∂i, ∂j)] is zero for
i, j, k, l ≥ 1 because Lng = 0 on TH by Lemma 5.1. Thus, LnR = 0 on TH, which shows the
result, by (5.11).

Define B the tensor of type (0, 2) by, for X,Y ∈ TH,

B(X,Y ) = −
∫ ∞
0

(µ(Xρ, Y ρ)− µ(X,Y )) exp

(∫ ρ

ϕp

κ

)
dρ .
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5 The homogeneity vector field

Proposition 5.14
The function Λ is smooth and satisfies the partial differential equation

Hess Λ + ω ⊗ dΛ + dΛ⊗ ω + η ⊗ Λ = B .

Moreover, if the spacetime is vacuum, this expression equals zero.

In other words, for X,Y ∈ TH,

Hess Λ(X,Y ) + ω(X)∇Y Λ + ω(Y )∇XΛ + η(X,Y )Λ = B(X,Y ) .

The smoothness is proved by induction in Appendix C, thus we only prove here the announced
formula and the last statement.

Proof. Recall that Hess Λ := ∇dΛ. With Propositions 5.12 and 5.10, we can compute

Hess Λ(X,Y ) = ∇X∇Y Λ−∇∇XY Λ

=

∫ ∞
0

[
∇Xρω(Y ρ)−∇Xω(Y )

+ ω(∇XρY ρ)− ω((∇XY )ρ)

+ (ω(Xρ)− ω(X))(ω(Y ρ)− ω(Y ))
]

exp

(∫ ρ

ϕp

κ

)
dρ .

We will show that

ω(∇XρY ρ)− ω((∇XY )ρ) = κ

∫ ρ

0

µ(Xs, Y s) +∇Xsω(Y s) + ω(Xs)ω(Y s)ds . (5.12)

Lemma 5.8 shows that

Ln[∇XρY ρ − (∇XY )ρ] = η(Xρ, Y ρ)n

= Ln
[
n

∫ ρ

0

µ(Xs, Y s) +∇Xsω(Y s) + ω(Xs)ω(Y s)ds

]
Moreover,

∇X0Y 0 − (∇XY )0 = 0 =

[∫ 0

0

µ(Xs, Y s) +∇Xsω(Y s) + ω(Xs)ω(Y s)ds

]
n .

Thus, the uniqueness of the solution of the first order ODE LnZ(ρ) = 0, Z(0) = 0 shows that

∇XρY ρ − (∇XY )ρ =

[∫ ρ

0

µ(Xs, Y s) +∇Xsω(Y s) + ω(Xs)ω(Y s)ds

]
n
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hence (5.12) taking ω of the previous equation. Using this fact, and expanding the product, we get

Hess Λ(X,Y ) =

∫ ∞
0

[
∇Xρω(Y ρ) + ω(Xρ)ω(Y ρ) + κ

∫ ρ

0

∇Xsω(Y s) + ω(Xs)ω(Y s)ds
]

exp

(∫ ρ

ϕp

κ

)
dρ

− ω(X)

∫ ∞
0

ω(Y ρ) exp

(∫ ρ

ϕp

κ

)
dρ− ω(Y )

∫ ∞
0

ω(Xρ) exp

(∫ ρ

ϕp

κ

)
dρ

+

∫ ∞
0

κ

[∫ ρ

0

µ(Xs, Y s)ds

]
exp

(∫ ρ

ϕp

κ

)
dρ

+ (ω(X)ω(Y )−∇Xω(Y ))Λ

=

∫ ∞
0

d

dρ

[(∫ ρ

0

∇Xsω(Y s) + ω(Xs)ω(Y s)ds

)
exp

(∫ ρ

ϕp

κ

)]
dρ

− ω(X)(∇Y Λ + ω(Y )Λ)− ω(Y )(∇XΛ + ω(X)Λ)

−
∫ ∞
0

µ(Xρ, Y ρ) exp

(∫ ρ

ϕp

κ

)
dρ+ (ω(X)ω(Y )−∇Xω(Y ))Λ

= −
∫ ∞
0

[µ(Xρ, Y ρ)− µ(X,Y )] exp

(∫ ρ

ϕp

κ

)
dρ− η(X,Y )Λ− ω(X)∇Y Λ− ω(Y )∇XΛ

recognizing a total derivative and integrating by parts. We have proved the announced formula.
Suppose now that the spacetime is vacuum, we need to prove that∫ ∞

0

[µ(Xρ, Y ρ)− µ(X,Y )] exp

(∫ ρ

ϕp

κ

)
dρ = 0 .

This is because in vacuum, the stress energy-tensor T is zero, thus, the Einstein equation (4.1)
implies Ric = 2λ/(n− 1)g where λ is the cosmological constant. We conclude by Proposition 5.13
and Lemma 5.1 that

d

dρ
[µ(Xρ, Y ρ)] = Lnµ(Xρ, Y ρ) = 0 .

Notice that in the vacuum case, and actually in any case where LnRic|H = 0, the elliptic PDE

Hess Λ + ω ⊗ dΛ + dΛ⊗ ω + η ⊗ Λ = 0

directly proves the smoothness of Λ by a bootstrap argument.
Theorem 5.1
The vector field h := Λn on H is smooth, null, nowhere-zero and satisfies ∇hh = −h. The null
generators starting with tangent h have an affine length equal to 1.

Notice that h doesn’t depend on the chosen null vector field n. Recall that this results holds
assuming only the dominant energy condition. This vector field h can be interpreted as some sort
of « homogeneity » vector field, in the sense that h normalises to the constant 1 the affine lengths
Λ′ of the lightlike geodesics of H emanating with initial velocity equal to h, which is equivalent to
normalizing the surface gravity κ′ = ωh(h) to −1.

Proof. The fact that h is smooth is a consequence of Proposition 5.14. Moreover, ∇hh = −h
because ωh(h) = −1 by Proposition 5.6 and Corollary 5.2. The last affirmation was proved in
Section 3.3.

Recall that we denote N −→ H the null bundle of H. Some geometric consequences of the results
of this section can be stated as follows :
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Proposition 5.15
Let h be the homogeneity vector field on H given by Theorem 5.1, and redefine ω := ωh. Then :

Lhg = 0 on TM|H

LhR = 0 on TH .

Moreover, if the spacetime is vacuum, the Riemann curvature tensor is characterized on H by ω
in the following sense :

R(X,Y )Z = dω(X,Y )Z

R(X,Z)Y = (∇ω(X,Y ) + ω(X)ω(Y ))Z

for X,Y ∈ TH and Z ∈ N .

Proof. We use the same notations for κ, η and N as in this section, but defined for n = h. With
Lemma 5.1, we only need to show that for X ∈ TH,

Lhg(X,N) = Lhg(N,N) = 0 .

By definition of N and linearity, ω = N [. Moreover, Lemma 5.6 shows that

Lhω = dκ = 0

because κ = −1. Thus, on TH,

0 = Lhg(N, · ) + g(LhN, ·) = Lhg(N, · )

because we extended h such that [h,N ] = LhN = 0. Moreover, as g(N,N) = 0,

0 = Lh[g(N,N)] = Lhg(N,N) + 2g(LhN,N) = Lhg(N,N)

hence the fact that Lhg = 0 on TM|H. We already proved the second and third facts. Proposition
5.14 (with B = 0 in the vacuum case) applied to n = h reads, since Λ = 1, η = 0. Thus
µ = −∇ω − ω ⊗ ω, hence the fourth fact.

As explained in Section 3, applying [PR18] and [Pet19], a corollary of Theorem 5.1 is that, in
the vacuum case, h can be extended as a Killing vector field to a neighbourhood of H, that is
spacelike in the totally hyperbolic region and timelike on the other side. In other words, in a
vacuum spacetime, any non-degenerate compact Cauchy horizon is a Killing horizon.
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Conclusion and perspectives
To conclude the mathematical content of this report, notice first that the results obtained hold
for any compact connected smooth totally geodesic null hypersurface H. Indeed, the fact the H is
a Cauchy horizon was only used in Theorem 2.1, and the conclusion of this theorem is still true
for such a hypersurface (see [Min15]). This fact also shows that the connectedness of H is not
a necessary hypothesis, as the results can be applied to each of its connected components that
satisfies the other hypotheses. Thus, the existence of a homogeneity vector field as in Theorem
5.1 and Proposition 5.15 holds for more general hypersurfaces such as compact null boundaries of
chronology violating sets, that are not necessarily Cauchy horizons.

On the other hand, the hypothesis of non-degeneracy cannot be dropped in our way of proceeding.
Thus, it would be interesting to study whether there exist degenerate compact Cauchy horizons.
As illustrated by the Isenberg-Moncrief conjecture, it is suspected that it is not the case.
Indeed, if this conjecture is true, any compact Cauchy horizon is a Killing horizon, thus has
a constant surface gravity as shown in [Chr20] : the associated Killing field K normalises the
surface gravity to a constant κ, i .e.∇KK = κK. Then, unless κ = 0, the horizon is non-degenerate.

Appendix D introduces a way of characterizing potentially degenerate horizons by studying the
behavior of the integral of the connection form on the generators (we saw that it converges to −∞
in the non-degenerate case). We prove that it cannot diverge to +∞ and that, under disputable
assumptions stated in [Haw92], it cannot oscillate without being bounded. Thus, it might be
interesting to study such «bounded horizons», and try to find nice properties that they satisfy.
In particular, notice that in the vanishing surface gravity case κ = 0 stated above, the horizon is
bounded in the previous sense. It might be interesting to study whether the converse is true, i .e.
if every bounded horizon has vanishing surface gravity (if moreover the generators are assumed to
be closed, this is shown in [MI83]). Using the Poincaré recurrence theorem, we also prove in this
appendix that in the non-degenerate case, every generator almost closes, with consequence the fact
that a compact Cauchy horizon is in the closure of the chronology violating set.

Conclusion générale
J’ai beaucoup apprécié ce stage. J’ai trouvé le sujet passionnant à la fois au niveau des significa-
tions physiques des objets que je manipulais, qu’au niveau du contenu mathématique qui est très
géométrique, comme souhaité. J’ai aussi pu assister au séminaire en ligne SCRI21 organisé par
mon encadrant Ettore Minguzzi, durant lequel j’ai suivi des présentations de chercheurs de toutes
nationalités, dont Roger Penrose.

Niveau travail, je n’ai pas échangé avec beaucoup de gens de l’université, ce qui m’a « forcé »
à travailler souvent en solitaire, bien que nous faisions le point deux fois par semaine avec mon
encadrant. Je ne l’ai pas mal vécu, car j’ai eu la chance de ne jamais être vraiment bloqué et
d’être toujours motivé. Je crois quand même être passé plusieurs fois par l’ascenseur émotion-
nel du chercheur : fausse découverte, désillusion, re-travail, avant d’obtenir enfin un résultat solide.

Au final, j’ai été conforté dans mon envie de poursuivre une carrière de chercheur ou d’enseignant-
chercheur. Le sujet sur lequel j’ai travaillé m’a beaucoup fait progresser et confirme mon goût pour
la géométrie différentielle. Je pense donc continuer à me spécialiser dans ce domaine, de préférence
en interaction avec la physique. Ce stage à aussi été l’occasion de pouvoir profiter de Florence, de
visiter d’autres paysages de Toscane, ainsi que Rome, et de rencontrer hors de l’université beaucoup
de gens différents de ce dont j’ai l’habitude. Mais par dessus tout, ce stage m’a apporté beaucoup
de pizzas.
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Appendix A

A Semi-Riemannian geometry
This section presents the results of semi-Riemannian geometry that are most important in this
report. See [ONe83] for reference.

A.1 Fundamental aspects
The manifolds considered here are assumed to be Haussdorff and second countable (that is, a
topological space that has a countable basis for its topology). Let M be a smooth manifold.
Denote T ∗M⊗M T ∗M the set of the pairs (p, η) with p ∈M and η a symmetric bilinear form on
TpM, and ΓM the set of smooth vector fields onM.

Definition A.1

A C k metric g onM is a C k section of the bundle T ∗M⊗M T ∗M−→M. That is, a C k metric
is an application g :M−→ T ∗M⊗M T ∗M such that for every p ∈M, gp is a symmetric bilinear
form on TpM, and such that for every smooth vector fields X,Y ∈ ΓM, the function

g(X,Y ) : p ∈M 7−→ gp(X(p), Y (p)) is C k .

If at every point the metric g is positive definite, g is said to be a Riemannian metric, and (M, g)
is a Riemannian manifold.

The metric g is said to be non-degenerate if it is non-degenerate at every point p ∈ M, i .e. if
there is no non-zero vector X ∈ TpM such that the linear form gp(X, . ) is zero. Equivalently, g
is non-degenerate if at every point the matrix of g in any basis is invertible.

Definition A.2

A semi-Riemannian manifold is a pair (M, g) where M is a smooth manifold and where g is a
non-degenerate smooth metric onM.

Theorem A.1

On a semi-Riemannian manifold (M, g), there is a unique torsion-free connection ∇ on TM that
preserves the metric, i .e. such that ∇g = 0.

This special connection is called the Levi-Civita connection of (M, g). The torsion-less property
means that for every X,Y ∈ ΓM, [X,Y ] = ∇XY −∇YX.

Recall that ΓM is the set of vector fields onM. Denote Γ∗M the set of one-forms onM.
Proposition A.1
The map

ΓM −→ Γ∗M
X 7−→ X[ = g(X, · )

is an isomorphism, called the musical isomorphism.

The inverse of the musical isomorphism is denoted

Γ∗M −→ ΓM
ω 7−→ ω]

.

The notion of curvature in semi-Riemannian geometry is dealt through the following tensor field,
which measures how covariant derivatives of vector fields fail to commute (which is a property of
non-flat spaces) :
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Definition A.3

The Riemann curvature tensor of (M, g) is the tensor of type (3, 1) defined by, for X,Y, Z ∈ TC,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z .

Notice that this definition means that R is the (3, 1) tensor such that for ω ∈ T ∗C,

R(X,Y, Z, ω) = ω(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)

but this notation is avoided. Indeed, it is used for the purely covariant version Rabcd = ga`R
`
bcd of

the curvature tensor, that satisfies

R(W,X, Y, Z) = g(R(W,X)Y,Z) .

Definition A.4

The Ricci tensor of (M, g) is the tensor of type (2, 10) defined by, for X,Y ∈ TC,

Ric(X,Y ) = Tr

(
TM −→ TM
Z 7−→ R(Z, Y )X

)
.

The scalar curvature is the function R :M−→ R defined in coordinates as

R = Tr(g−1Ric) = gµνRµν

where Rµν is the coordinates of Ric.

Denote d the exterior derivative.
Proposition A.2
Let ω be a one-form onM. Then for X,Y ∈ TC,

dω(X,Y ) = ∇X [ω(Y )]−∇Y [ω(X)]− ω([X,Y ]) .

Definition A.5

Let f :M−→ R be a C 2 function. The Hessian of f is defined as Hess f = ∇df . More precisely,
it is the tensor field

Hess f(X,Y ) = ∇X∇Y f −∇∇XY f .

Definition A.6

A curve γ onM is called a geodesic if it satisfies the geodesic equation ∇γ′γ′ = 0.

A curve γ : (a, b) −→M is said to be past-inextendible (resp. future-inextendible) if γ(t) doesn’t
converge when t → a (resp. when t → b). The geodesic equation is a linear second-order ODE.
Thus, for every p ∈ M and X ∈ TpM, there is a unique inextendible geodesic γ defined on a
maximal interval [0, L) such that γ(0) = p and γ′(0) = X. The number L is called the affine
length of γ starting from p and it can be finite or infinite. If it is finite, γ is said to be incomplete,
and complete otherwise.

The Lie derivative L is a tensor derivation along vector fields. It can be defined by induction on
the type of the tensor field. For vector fields X,Y ∈ ΓM, denoting [· , · ] the Lie bracket, it satisfies

LXY = [X,Y ] = ∇XY −∇YX .
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For functions f :M−→ R, it satisfies

LXf = ∂Xf .

Finally, for covariant tensors T , it satisfies

LXT (p) =
d

dt

[
(ϕtX)∗(T (ϕtX(p))

]
where (ϕtX)∗ is the pullback by the flow ϕtX of X.

Definition A.7
A vector field X ∈ ΓM is called a Killing field if

LXg = 0 .

It can be shown that X ∈ ΓM is a Killing field if and only if the flows ϕtX of X are local isometries.
Thus, a Killing field is a vector field that preserves the metric along its flow. It can also be shown
that a Killing field also preserves the Riemann curvature tensor and the scalar curvature along its
flow. The existence of a Killing field on M is a special property that implies a strong symmetry
ofM.

A.2 Some properties of fiber bundles
Proposition A.3
Let p : H −→M be a vector bundle on a compact manifoldM with a positive definite fiber metric
g. The unitary subbundle defined as

U =
{

(p, v) ∈ H
∣∣∣ g(v, v) = 1

}
is compact.

Proof. For any trivializing open set D ⊂M, asM is locally compact, there is a trivializing open
set V ↪−→◦ D such V is compact. Thus, as M is compact, there are such open sets Vi ↪−→◦ Di, for
1 ≤ i ≤ m, such thatM = ∪mi=1Vi. Denote by φi the homeomorphism defining Di,

φi : Di × Rn −→ H ∩ pr−11 (Di)
(p, µ1, ... , µn) 7−→ (p,

∑n
k=1 µkvk(p))

.

Thanks to the Gram-Schmidt algorithm for vector bundles, we can suppose that the vi’s are
orthonormals.
Now, if (p, v) ∈ U , and if i is such that p ∈ Vi, if (µ1, ... , µn) = pr2(φ−1i (p, v)), we have

v =

n∑
k=1

µkvk(p)

thus 1 = ‖v‖2 =
∑n
i=1 µ

2
k. This an equivalence, so

U ∩ pr−11 (Vi) = φ−1i (Vi × SRn(0, 1))

is compact. Finally,

U =

n⋃
i=1

U ∩ Vi

is compact as a finite union of compact sets.
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Corollary A.1
Let p : H −→M be a vector bundle on a compact manifoldM with a positive definite fiber metric
g. The frame bundle associated to H, defined as

F =
{

(p, e1, ... , en)
∣∣∣ p ∈M, ei ∈ Hp, (e1, ... , en) is an orthonormal basis of Hp

}
is compact.

Proof. With the notations of Proposition A.3, we clearly have F ⊂ U ×M ... ×MU (fiber product
overM, equal to the tuples (p, u1, ... , u1) where ui is in the unit sphere of Hp) which is compact
thanks to Proposition A.3, because it is a closed subset of the compact space U n. Thus, we
only need to show that F is closed in U ×M ... ×M U . It is clear because for (p, v1, ... , vn) ∈
U ×M ... ×M U , we have

(p, v1, ... , vn) ∈ F ⇐⇒ ∀i 6= j, g(vi, vj) = 0

and the functions (p, v1, ... , vn) 7−→ g(vi, vj) are continous, hence the result.

Proposition A.4
LetM be a smooth manifold and let ω be a smooth nowhere-zero one-form onM. Then kerω −→
M is a smooth subbundle of TM.

Proof. This result is a direct corollary of [Lee83, Th 10.34], which states that the image and kernel
of a constant rank smooth map are subbundles, in the case where the rank of the map is constant
to one.
Proposition A.5
Let π : E −→M be a smooth vector bundle and let F −→M, G −→M be smooth subbundles of
π such that dim(Fp ∩Gp) is independant of p ∈M. Then F ∩G is a smooth subbundle of π.

Proof. We know that E ⊕ E −→M is a smooth bundle for which F ⊕G is a smooth subbundle,
and that admits a smooth map

D : E ⊕ E −→ E
(v, w) 7−→ v − w

.

Define D̃ = D|F⊕G. For p ∈ M, ker D̃p = (Fp ∩ Gp)2 has a dimension independant of p. Thus,
D̃ satisfies the hypothesis of [Lee83, Th 10.34], which shows that ker D̃ is a smooth subbundle of
E ⊕ E −→M. Hence the result, as F ∩G can be identified with ker D̃.

A.3 Existence and uniqueness of horizontal geodesics
The proof of Proposition A.2 is based on the construction of a suitable neighbourhood of p ∈ H
(a foliated cylinder) on which horizontal geodesics will be in association with the usual geodesics
of a specific quotient Riemannian manifold.

Construction of a suitable neighbourhood
Let X ∈ ΓH be a null nowhere zero vector field on H, and denote its flow by ϕ : H × R −→ H.
We will denote the same way ϕt and ϕ(. , t). Let (W, ψ) be a chart containing p, with ψ(p) = 0,
ψ : W −→ V ↪−→◦ Rn. Let ε > 0 and denote Np = dψp(X(p)), Wp = N⊥R

n

p , D0 = BRn(0, ε) ∩Wp

and finally D = ψ−1(D0).
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For q ∈ D, denote as well Nq = dψq(Xq). As Tψ(p)D0 = Wp, D0 is transversal to RNp, which
shows that D is transversal in p to RX(p), as Tψ(p)D0 = dψp(TpD) and RNp = dψp(RX(p)).
Moreover, D remains transversal to X on all of D for ε > 0 small enough.
Indeed, the map q ∈ D 7−→ Nq is continuous and by the definition of D, for every q ∈ D,
dψqTqD = Tψ(q)D0 = Wp, and Np ∈W c

p ↪−→◦ Rn, which shows that for ε > 0 small enough, for every
q ∈ D, Nq ∈ W c

p , i .e. Nq /∈ dψqTqD, which means that the hyperplane dψqTqD is transversal to
Nq, and thus that D is transversal to X.
As D = ψ−1(BRn(0, ε) ∩Wp) is compact, there is δ > 0 such that the flow ϕ of X is defined on
D × (−δ, δ). Moreover,

dϕ(p,0)(Y, s) = sX(p) + Y

so dϕ(p,0) : T(p,0)D× (−δ, δ) −→ TpH is surjective, as D is transversal to X, hence an isomorphism
as the dimensions are equal. By the Inverse function theorem, this shows that for δ > 0 small
enough, and by reducing D if necessary, ϕ : D × (−δ, δ) −→ H is a diffeomorphisme on its image
U = ϕ(D × (−δ, δ)) ↪−→◦ H.
Note that U is foliated with the curves Cx = ϕ({x}×(−δ, δ)) for x ∈ Cx. Introduce the equivalence
relation on U defined by

a ∼ b if ∃x ∈ D, a, b ∈ Cx
and consider the quotient V := U/ ∼ (with the quotient topology), and the canonical projection
ξ : U −→ V . The map

ξ|D : D −→ V
x 7−→ ξ(x)

is a homeomorphism. Indeed, by definition of U and ∼, it is continuous and surjective, and it is
injective as for every x ∈ D, Cx ∩D = {x} by injectivity of ϕ. Thus, it is a continuous bijective
map, and it is also open because if V ↪−→◦ D, ξ−1(ξ(V)) = ϕ(V×(−δ, δ))↪−→◦ U as ϕ is a diffeomorphism,
so ξ(V) ↪−→◦ V by definition of the quotient topology. This show that ξ|D is a homeomorphism.
Now, consider the smooth manifold structure induced by D and ξ|D on V , i .e. such that ξ|D is a
diffeomorphism. Denote for |t| < δ, Dt := ϕ(D × {t}). As ϕt is a diffeomorphism, Dt = ϕt(D) is
a smooth hypersurface of U .
Denote also ξt := ξ|Dt : Dt −→ V . As ξt = ξ|D ◦ ϕt|Dt , and as ξ|D and ϕt|Dt are diffeomorphisms
on their images, ξt is a diffeomorphism.
Moreover, as each ϕt is a diffeomorphism, and as d(ϕt)x(Xx) = X(ϕt(x)) (the flow preserves X),
each Dt is still transversal to X because for x ∈ D,

Tϕt(x)Dt + RXϕt(x) = d(ϕt)x(TxD + RXx) = Tϕt(x)H .

Now, if f ∈ F(V ), denote f∗ = f ◦ ξ ∈ F(U). Recall that we denote π : TH = N ⊕H −→ H the
canonical projection. Given a vector field Y ∈ ΓV , we can define a smooth horizontal lift Y ∗ ∈ ΓU
of Y as follows : for p ∈ Dt,

Y ∗(p) = π
(

(d(ξt)p)
−1
Y (ξ(p)

)
∈ Hp

(Recall that ξt : Dt −→ V is a diffeomorphism.) Note that by definition of π,

Y ∗(p) ∈ (d(ξt)p)
−1
Y (ξ(p) + RX(p) (A.1)

and for f ∈ F(V ),
dξp(X(p))f = X(f ◦ ξ)p = (LXf ◦ ξ)p = 0

because f ◦ ξ is constant along the flow of X by definition of ξ. This shows that

dξp(X(p)) = 0 . (A.2)

and thus that

dξp(Y
∗(p)) = Y (ξ(p)) . (A.3)
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Y ∗ is actually the only horizontal vector field (i .e. vector field such that Y ∗(p) ∈ Hp) on U that
satisfies (A.3). This equation also shows that for f ∈ F(V ),

Y ∗(f∗) = Y (f)∗ (A.4)

Let us show that if Y, Z ∈ ΓV , we have

π([Y ∗, Z∗]) = [Y,Z]∗ (A.5)

For p ∈ Dt, denote Lp = πp|TpDt . As TpDt and Hp are supplementary of Np, Lp is actually an
isomorphism TpDt −→ Hp (because the dimensions are equal and because kerLp = TpDt ∩ Np =
{0}). In order to show the equation above, we only need to show

L−1p (π([Y ∗, Z∗])) = L−1p ([Y,Z]∗) .

We know that for v ∈ TpDt, v ∈ πp(v) + RX(p), i .e. v ∈ Lp(v) + RX(p). As Lp is surjective,
this shows that for every h ∈ Hp, L−1p (h) ∈ H + RX(p), and as by definition, for every c ∈ TpH,
c ∈ πp(c) + RX(p), we get L−1p (πp(c)) ∈ c + RX(p). With c = [Y ∗, Z∗]p, we obtain a λ ∈ R such
that

L−1p (π([Y ∗, Z∗]p)) = [Y ∗, Z∗]p + λX(p) ∈ TpDt .

On the other hand, by definition of [Y, Z]∗,

L−1p ([Y,Z]∗) = (d(ξt)p)
−1
Y (ξ(p)) ∈ TpDt .

To show the equality, let f ∈ F(Dt). As ξt : Dt −→ V is a diffeomorphism, we can assume that f
is of the type f = r∗|Dt , where r ∈ F(V ). However, by (A.2),

X(r∗) = X(r ◦ ξ) = dξ(X)r = 0 .

We can now compute, thanks to (A.4),

L−1p (π([Y ∗, Z∗]p))f = ([Y ∗, Z∗]p + λX(p))r∗

= [Y ∗, Z∗]pr
∗

= Y ∗(Z∗(r∗))p − Z∗(Y ∗(r∗))p
= Y (Z(r))∗p − Z(Y (r))∗p

= ([Y,Z]r)∗p

= [Y, Z]∗pr
∗

= L−1p ([Y,Z]∗)r∗ = L−1p ([Y, Z]∗)f

As L−1p ([Y,Z]∗) ∈ [Y,Z]∗ + RX(p). This is true for every f ∈ F(Dt), which shows the equality
wanted.
We will now introduce a "quotient" metric on V . Define the metric q on V by, for Z, Y ∈ ΓV ,
p ∈ V ,

q(Z, Y )p = g(Z∗, Y ∗)ξ−1
0 (p)

q is clearly a metric on V . Moreover, it is non-degenerate because X∗, Y ∗ ∈ H and H is supple-
mentary to the null direction of H, so it contains no non-zero null vectors. This shows that q is
non-degenerate, as the map Y (p) 7−→ Y ∗(ξ−10 (p)) is the map

Lξ−1
0 (p) ◦ d(ξ0)−1p : TpV −→ Tξ−1

0 (p)

v 7−→ v∗

which is an isomorphism, as a composition of isomorphisms. Thus, (V, q) is a semi-Riemannian
manifold. Denote by D its Levi-Civita connection. A way to link horizontal geodesics on U and
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geodesics on V will be to show a useful formula for D. More precisely, we will show that for
Y,Z ∈ ΓV , and for p ∈ U ,

(DY Z)ξ(p) = dξp (π (∇Y ∗Z∗(p))) (A.6)

This will comme from the fact that for every p ∈ U ,

q(Z, Y )ξ(p) = h(Z∗, Y ∗)p (A.7)

A priori, by definition of q, this only true for p ∈ D. To show (A.7), we will use the fact that on
U ,

LXg = 0 (A.8)

Indeed, as L is a tensor derivation, for V,W ∈ ΓU ,

Xg(V,W ) = LXg(V,W ) + g(LXV,W ) + g(V,LXW )

= LXg(V,W ) + g([X,V ],W ) + g(V, [X,W ])

However, we know that Xg(V,W ) = g(∇XV,W ) + g(V,∇XW ), which shows that

(LXg)(V,W ) = g(∇VX,W ) + g(∇WX,V ) = 0

because ∇X is still null and tangent to H (see Lemma 4.1), thus orthogonal to H.
We can now show that for p ∈ D, for v, w ∈ TpD, the function

t 7−→ g(dϕt(v),dϕt(w)) is a constant. (A.9)

Indeed, we have the classical formula for the Lie derivative (see for example [ONe83, p. 250]) :

0 = LXg = lim
t→0

1

t
(ϕ∗th− h)

thus, as ϕt+s = ϕt ◦ ϕs,

d

ds
g(dϕs(v),dϕt(w)) = lim

t→0

1

t
(g(dϕt(dϕs(v)),dϕt(dϕs(w))− g(dϕs(v),dϕs(w)))

= (LXg)(dϕs(v),dϕs(w)) = 0

and the function is indeed a constant . Moreover, as X is null and orthogonal to TpH, we have by
(A.1), for p ∈ Dt,

g(Z∗, Y ∗)p = g((d(ξt)p)
−1
Z(ξ(p), (d(ξt)p)

−1
Y (ξ(p)) .

Thus, to show (A.7), we only need to show that for x ∈ V , the function

t 7−→ g(d(ξ−1t )xZ(x),d(ξ−1t )xY (x))

is a constant. Thanks to (A.9), and again with the fact that X is null and orthogonal to TH, we
only need to show that for every t,

d(ξ−1t )xZ(x) ∈ dϕt(d(ξ−10 )xZ(x)) + RX .

We can compute, as clearly ξ ◦ ϕt = ξ,

dξξ−1
t (x)d(ξ−1t )xZ(x) = Z(x)

dξξ−1
t (x)dϕt(d(ξ−10 )xZ(x)) = d(ξ ◦ ϕt)ξ−1

0 (x)(d(ξ−10 )xZ(x)) = dξξ−1
0 (x)(d(ξ−10 )xZ(x)) = Z(x) .
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Which shows that dξξ−1
t (x)d(ξ−1t )xZ(x) = dξξ−1

t (x)dϕt(d(ξ−10 )xZ(x)). Moreover, we know that
d(ξ−1t )xZ(x) ∈ TDt, thus if R = L−1p (π(dϕt(d(ξ−10 )xZ(x))), we know that

R ∈ dϕt(d(ξ−10 )xZ(x)) + RX

so dξ(R) = dξ(dϕt(d(ξ−10 )xZ(x))) = dξ(d(ξ−1t )xZ(x)). But R ∈ TDt by definition, and dξt is
injective on TDt because ξt is a diffeomorphism. Thus,

d(ξ−1t )xZ(x) = R ∈ dϕt(d(ξ−10 )xZ(x)) + RX

and we have (A.7), by the previous arguments. We can now show (A.6). We now know that

g(Z∗, Y ∗) = q(Z, Y )∗ .

We can compute, for every W ∈ ΓV , by the Koszul formula (see [ONe83, p. 61]) used twice, and
by (A.5),

g(π(∇Y ∗Z∗),W ∗) = g(∇Y ∗Z∗,W ∗)

=
1

2
(Y ∗g(W ∗, Z∗) + Z∗g(Y ∗,W ∗)−W ∗g(Y ∗, Z∗)

− g([Z∗,W ∗], Y ∗)− g([Y ∗,W ∗], Z∗)− g([Z∗, Y ∗],W ∗))

=
1

2
(Y q(W,Z) + Zq(Y,W )−Wq(Y,Z)

− q([Z,W ], Y )− q([Y,W ], Z)− q([Z, Y ],W ))∗

= q(DY Z,W )∗

Thus, by (A.7), we have, by definition of Y 7−→ Y ∗,

q(dξp (π (∇Y ∗Z∗(p))) ,W )ξ(p) = g(dξp (π (∇Y ∗Z∗(p)))∗ ,W ∗)p
= g(π (∇Y ∗Z∗(p))∗ ,W ∗)p
= q(DY Z,W )ξ(p) .

As this is true for every W ∈ ΓV , and as q is non-degenerate, we get (A.6). This equation is the
fundamental result that will allow us to conclude.

Proof of Proposition 2.5
We start by proving the local existence of horizontal geodesics :

Proposition A.1
For every p ∈ H and v ∈ Hp, for ε > 0 small enough, there is a unique horizontal geodesic
γ : (−ε, ε) −→ H such that γ(0) = p and γ′(0) = v.

We will use compactness of H to deduce Proposition 2.5. We stay in the context of the preceding
construction. The two following propositions make use of Equation (A.6) and will be used in the
proof of Proposition A.1.

Proposition A.2

Let α be a curve on V and p ∈ U such that ξ(p) = α(0). There is a unique horizontal curve γ on
U such that α = ξ ◦ γ.

Proof. We must chose γ of the form :

γ(s) = ξ−1f(s)(α(s)) = ϕ(ξ−10 (α(s)), f(s))

42



Appendix A

for some function f with f(0) fixed such that γ(0) = p, i .e. such that p ∈ Df(0). We can compute
:

γ′(s) = f ′(s)X(γ(s)) + dϕf(s)d(ξ−10 )α(s)α
′(s)

= f ′(s)X(γ(s)) + d(ϕf(s) ◦ ξ−10 )α(s)α
′(s)

= f ′(s)X(γ(s)) + d(ξ−1f(s))α(s)α
′(s)

And we have d(ξ−1f(s))α(s)α
′(s) ∈ Tγ(s)Bf(s). Thus, in order to have γ′(s) ∈ Hγ(s), we have to chose

f such that
f ′(s) = −coordX(d(ξ−1f(s))α(s)α

′(s))

where the term on the right is the coordinate on X of d(ξ−1f(s))α(s)α
′(s) in the decomposition

TC = H ⊕N . This term is a smooth function of f(s), so this equation really is a first order ODE
on f . Thus, we know that there is a unique solution f of this ODE such that f(0) is fixed with p.
Then γ defined as above is the unique horizontal curve with γ(0) = p such that ξ ◦ γ = α.

Proposition A.3
Let γ be a horizontal curve on U , and α := ξ ◦ γ. Then,

γ is a horizontal geodesic ⇐⇒ α is a geodesic of V

Proof. For every s, α′(s) = dξγ(s)γ
′(s). Extend α′ to a vector field Z on a neighbourhood of α,

i .e. such that Z(α(s)) = α′(s). Then we know that

Dα′α′(s) = DZZ(α(s)) .

Moreover, if γ(s) ∈ Dt,

Z∗(γ(s)) = π((dξt)
−1Z(ξ(γ(s))))

= π((dξt)
−1α′(s))

= π(γ′(s))

= γ′(s)

thus Z∗ is a vector field on U that extends γ′. Equation (A.6) states that

DZZ(α(s)) = dξγ(s)π(∇Z∗Z∗(γ(s)))

so we get

Dα′α′(s) = dξγ(s)π(∇γ′γ′(s)) (A.10)

Now, if γ is a horizontal geodesic, π(∇γ′γ′(s)) = 0 so by (A.10), α is a geodesic. If α is a
geodesic, dξγ(s)π(∇γ′γ′(s)) = 0. But we saw earlier that L−1γ(s)(π(∇γ′γ′(s))) ∈ π(∇γ′γ′(s)) + RX
and X ∈ ker dξ, so

L−1γ(s)(π(∇γ′γ′(s))) ∈ Tγ(s)Dt ∩ ker dξ = ker dξt = {0}

thus π(∇γ′γ′(s)) = 0 and γ is a horizontal geodesic.

We can now demonstrate the main results of this section.
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Proof of Proposition A.1. As we need to show the result for ε > 0 small enough, it suffices to show
the result in the open set U ⊃ p.
Uniqueness : If γ1 and γ2 are two horizontal geodesics satisfying Proposition A.1, then by
Proposition A.3, α1 = ξ ◦ γ1 and α2 = ξ ◦ γ2 are two geodesics of V starting in ξ(p), with initial
velocity dξ(v), so are equal by uniqueness of geodesics. The uniqueness of Proposition A.2 then
shows us that γ1 = γ2.
Existence : Let α be a geodesic on V such that α(0) = ξ(p) and α′(0) = dξ(v). By Proposition
A.2, there is a horizontal curve γ on U such that ξ ◦ γ = α, and such that γ(0) = p. Proposition
A.3 shows that γ is a horizontal geodesic. Finally, we have dξ(γ′(0)) = dξ(v), with v, γ′(0) ∈ Hp.
However, we saw that

dξp|Hp = d(ξt)p ◦ L−1p
is injective, so γ′(0) must be equal to v, hence the existence

Proof of Proposition 2.5. Proposition A.1 shows us that there is a < b ∈ R, possibly infinite, and
an inextensible horizontal geodesic γ : (a, b) −→ R such that γ(0) = p, γ′(0) = v. Suppose for
example that b <∞. Let bn −→ b be a converging sequence of (a, b). Recall that asH is transversal
to the null direction of H, H is actually spacelike (H cannot contain any non-zero null vector nor
any timelike vector because then it would contain two independent null vectors, see for example
[ONe83, p. 141]). The computation

g(γ′, γ′)′ = 2g(∇γ′γ′, γ′) = 2g(π(∇γ′γ′), γ′) = 0

shows that the spacelike norm of γ is constant. Thus, by compactness of H, and by Proposition
A.3, γ′ lies in a compact set of TH, and thus we can chose bn such that γ(bn) and γ′(bn) converge.
But then, Proposition A.1 allows us to extend γ with a horizontal geodesic starting from limn γ(bn)
with initial velocity limn γ

′(bn), which is a contradiction by inextendibility of γ. Thus b =∞, and
similarly, a = −∞.

B Mathematical relativity

B.1 The notion of spacetime

Definition B.1

A Lorentzian manifold is a pair (M, g) where M is a smooth manifold, and g is a C∞ non-
degenerate metric onM with signature (−,+, ... ,+) at every point ofM.

If X ∈ TM,we define the causal character of X as

timelike if g(X,X) < 0

spacelike if g(X,X) > 0

lightlike if g(X,X) = 0 and X 6= 0 .

We also say that X is causal if X is timelike or lightlike, and that X is null if X is lightlike or
zero. We extend pointwisely the previous definitions to vector fields X ∈ ΓC : X is said to be
timelike/spacelike/lightlike/causal/null if X(p) is timelike/spacelike/lightlike/causal/null at every
point p ∈M. We also extend these definitions to curves γ : I −→M.
The causal cone of p ∈ M is the set of causal vectors of TpM. The causal cone of p has two
connected components.
A Lorentzian manifold (M, g) is said to be time-orientable if there is a smooth choice of a connected
component of the causal cone. More precisely, (M, g) is time-orientable if there is a smooth global
timelike vector field V ∈ ΓM.
At every point p ∈ M, the connected component of the causal cone containing V (p) is called the
future causal cone of p, and the other connected component is the past causal cone. A causal vector
X ∈ TM is future if it is in the future causal cone, and past otherwise.
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Definition B.2

A spacetime is a time-oriented non-compact connected Lorentzian manifold (M, g).

The non-compact hypothesis is here because compact Lorentzian manifolds are pathologically
non-physical. For example, they always contain closed timelike curves, which is not a very physical
property (time travel, violation of causality...).

The most simple example of spacetime is the Minkowski space Rn+1, endoced with the Lorentzian
metric g = −dt2 + (dx1)2 + ... + (dxn)2. Notice that for every spacetime (M, g) and p ∈ M, the
spacetime (TpM, gp) is isometric to the Minkowski space of dimension n+ 1 = dimM.
Proposition B.1
The causal character of geodesics onM is constant.

B.2 Causality theory
The main definitions and results of causality theory that we will use are presented here. Let (M, g)
be a spacetime and S ⊆M. We define :
(i) the chronological future of S as :

I+(S) =
{
p ∈M

∣∣∣ there is a future-directed timelike curve leaving S ending at p
}

(ii) the causal future of S as :

J+(S) =
{
p ∈M

∣∣∣ there is a future-directed causal curve leaving S ending at p
}

(iii) the chronological past of S as :

I−(S) =
{
p ∈M

∣∣∣ there is a past-directed timelike curve leaving S ending at p
}

(iv) the causal past of S as :

J−S) =
{
p ∈M

∣∣∣ there is a future-directed causal curve leaving S ending at p
}
.

If F ⊆M and S ⊆M, we define

I+(S, F ) =
{
p ∈M

∣∣∣there is a future-directed timelike curve contained in F leaving S ending at p
}

and similarly for the past and causal future and past versions.
Proposition B.2
The causality relation I is open.

This result means that if p ∈ I+(q), the the same is true for (p′, q′) in an open neighbourhood
of (p, q). A set A ⊆ M is said to be achronal if I+(A) ∩ A = ∅, that is, no timelike curve can
connect two points of A.

The edge of an achronal set A is defined as the set of points p ∈ A such that every neighbourhood
U of p contains a timelike curve from I−(p,U) to I+(p,U) that doesn’t intersect A.
Definition B.3
A partial Cauchy surface is an acausal and edgeless hypersurface ofM.

The following results are respectively [ONe83, Prop 14.25], [ONe83, Cor 14.27] and [ONe83, Prop
14.53 (1)], and can be used to show that Cauchy horizons of connected partial Cauchy surfaces are
C 0 hypersurfaces, as shown in Section 2.2.
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Proposition B.3
An achronal set A ⊆M is a topological hypersurface ofM if and only if A and its edge are disjoint.

A set P ⊆M is said to be past if I−(P ) ⊂ P .
Corollary B.1
The boundary of a future set is a closed achronal topological hypersurface.

Proposition B.4
Let S ⊆M be a closed acausal topological hypersurface. Then

H+(S) = I+(S) ∩ ∂D+(S) .

C Induction proof of the smoothness of the affine length
In the context of Section 5 (non-vacuum case), this section proves by induction the smoothness of
the affine length Λ. We begin with two lemmas that clarify the structure of ∇k

Xρ1 ... X
ρ
k
Xρ
r com-

pared to (∇kX1... Xk
Xr)

ρ, where the X ′is are vector fields, and then Proposition C.1 easily concludes.

If T is a covariant tensor field and the Xi’s are vector fields, by the expression

T
(
∇≤kXi1 ...XimXr

)
we mean the evaluation of T on terms of the type ∇mXi1 ...XimXr where m ≤ k.

Lemma C.1

Let (Xi)i∈N be local vector fields around p ∈ H. For every k ∈ N, there is a tensor field η(k) such
that for ρ ≥ 0,

∇kXρi1 ...X
ρ
ik

Xρ
r =

(
∇kXi1 ...XikXr

)ρ
+

[∫ ρ

0

η(k)
(
∇≤k−1Xsj1

...Xsjm
Xs
r

)
ds

]
n .

Proof. We proceed by induction on k. Denote Yk = ∇kXi1 ...XikXr. The case k = 0 is clear, and
the case k = 1 is the consequence of the following fact that was proved in the demonstration of
Proposition 5.14 :

∇XρY ρ = (∇XY )
ρ

+

[∫ ρ

0

η(Xs, Y s)ds

]
n .

Suppose that the result holds for k ∈ N, and let us prove that it is still true for k + 1. We have,
by Proposition 5.8 and the induction hypothesis,

Ln[∇k+1
Xρ,Xρi1

...Xρik
Xρ
r ] = (Ln∇)(Xρ)∇kXρi1 ...X

ρ
ik

Xρ
r +∇Xρ

[
Ln
[
∇kXρi1 ...X

ρ
ik

Xρ
r

]]
= η(Xρ,∇kXρi1 ...X

ρ
ik

Xρ
r )n+∇Xρ

[
η(k)(∇≤k−1

Xρj1
...Xjmρ

Xρ
r ) · n

]
=
(
η(Xρ,∇kXρi1 ...X

ρ
ik

Xρ
r ) + ω(Xρ)η(k)(∇≤k−1

Xρj1
...Xρjm

Xρ
r )

+∇Xρη(k)(∇≤k−1Xρj1
...Xρjm

Xρ
r ) + η(k)(∇≤k

Xρj1
...Xρjm

Xρ
r )
)
n

:= η(k+1)
(
∇≤k
Xρj1

...Xρjm
Xρ
r

)
n .
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Which shows, by uniqueness of the solution of the ODE LnZ = 0, Z(0) = 0, that

∇k+1
Xρ,Xρi1

...Xρik
Xρ
r = (∇k+1

Xi1 ...Xik
Xr)

ρ +

[∫ ρ

0

η(k+1)
(
∇≤kXsj1 ...XsjmX

s
r

)
ds

]
n

hence the induction.
Lemma C.2

Let (Xi)i∈N be local vector fields around p ∈ H. For every k ∈ N, there is a vector field Yk and a
function λk such that for ρ ≥ 0,

∇kXρi1 ...X
ρ
ik

Xρ
r = (Yk)ρ + λk(ρ)n

and such that λk is dominated by a polynomial function in ρ with continuous coefficients.

Proof. We proceed again by induction. The case k = 0 is clear, and the case k = 1 is the conse-
quence the demonstration of Proposition 5.14 and of the fact that we saw in the demonstration
of Proposition 5.10 that Xρ = Xρ

H + λ(ρ)n where Xρ
H ∈ H and where λ is bounded by an affine

function (these facts show that
∫ ρ
0
η(Xs, Y s)ds is bounded by a polynomial in ρ).

Suppose that the result holds for k ∈ N, and let us prove that it is still true for k+1. With Lemma
C.1, we only need to check that the function∫ ρ

0

η(k+1)
(
∇≤kXsj1 ...XsjmX

s
r

)
ds

is dominated by a polynomial in ρ. This is true because applying the induction hypothesis, we
have that ∇≤k−1Xsj1

...Xsjm
Xs
r = (Yk)ρ + λkn with λk dominated by a polynomial. We then have by

decomposing (Yk)ρ = (Yk)ρH + ηn that, for r ≤ k − 1,

∇rXsj1 ...XsjmX
s = (Yk)ρH + λ′kn

where λ′k is dominated by a polynomial. Thus,∫ ρ

0

η(k+1)
(
∇≤kXsj1 ...XsjmX

s
r

)
ds

is just a sum of integrals of polynomial-dominated functions times tensor fields (contracted with n)
evaluated on horizontal vectors, and we conclude with the compactness of the unitary subbundle
of H that it is polynomial-dominated.

Proposition C.1

For every k ∈ N, Λ is C k and there is ` ∈ N and tensor fields Ui, Vi on H such that

∇kΛ(X1, ..., Xk) =

∫ ∞
0

[∑̀
i=1

Ui(∇≤kXi1 ...XimXr)Vi(∇≤kXρi1 ...X
ρ
im

Xρ
r )

]
exp

(∫ ρ

ϕp

κ

)
dρ .

Proof. We proceed by induction. The result is clear for k = 0 and k = 1 with Proposition 5.10.
Suppose that the result holds for k and let X ∈ TH. Denote

Fρ =

[∑̀
i=1

Ui(∇≤kXi1 ...XimXr)Vi(∇≤kXρi1 ...X
ρ
im

Xρ
r )

]
exp

(∫ ρ

ϕp

κ

)
dρ .

47



Appendix D

For ρ ≥ 0, we have

∇XFρ = (ω(Xρ)− ω(X))Fρ +
[∑̀
i=1

(∇XUi(∇≤kXi1 ...XimXr) + Ui(∇≤k+1
Xi1 ...Xim

Xr))Vi(∇≤kXρi1 ...X
ρ
im

Xρ
r )

+ Ui(∇≤kXi1 ...XimXr)(∇XρVi(∇≤kXρi1 ...X
ρ
im

Xρ
r ) + Vi(∇≤k+1

Xρi1
...Xρim

Xρ
r ))
]

exp

(∫ ρ

ϕp

κ

)
dρ

=

 `′∑
i=1

U ′i(∇
≤k+1
Xi1 ...Xim

Xr)V
′
i (∇≤k+1

Xρi1
...Xρim

Xρ
r )

 exp

(∫ ρ

ϕp

κ

)
dρ .

Notice that using the splitting TH = H ⊕ Rn, Lemma C.2 shows that each term of the form
∇≤k+1
Xi1 ...Xim

Xr is the sum of a horizontal vector with a polynomial-dominated function times n.
Thus,

`′∑
i=1

U ′i(∇
≤k+1
Xi1 ...Xim

Xr)V
′
i (∇≤k+1

Xρi1
...Xρim

Xρ
r )

is polynomial-dominated, as a sum of polynomial-dominated functions times tensor fields (con-
tracted with n) evaluated on horizontal vectors. As there is K > 0 such that κ < −K, we conclude
by the theorem of differentiation under the integral sign that Λ is C k+1 and that ∇k+1Λ is given
by

∇k+1Λ(X,X1, ... , Xn) =

∫ ∞
0

(∇XFρ) dρ−
k∑
i=1

∇kΛ(X1, ... ,∇XXi, ..., Xk)

which is of the announced form, by the induction hypothesis.

A direct corollary of Proposition C.1 is :

Corollary C.1
The function Λ is smooth.

D Behavior of general null generators

Possible behaviours of complete generators
LetH be a connected compact Cauchy horizon in a spacetime where the dominant energy condition
holds. Section 5.2 shows that if H is non-degenerate, its null generators are future incomplete.
Denote Γ+

NH the set of smooth future-directed nowhere-zero null vector fields on H. We actually
showed the following result :

Theorem D.1
Let H be a compact Cauchy horizon. The following are equivalent :
(i) every null generator of H is future-incomplete
(ii) H contains a future-incomplete null generator

(iii) for every p ∈ H and Z ∈ Γ+
NH,

∫
ϕZp

ωZ = −∞

(iv) there is p ∈ H and Z ∈ Γ+
NH such that

∫
ϕZp

ωZ = −∞

(v) there is X ∈ Γ+
NH such that ωX(X) < 0.

A horizon that satisfies this properties will be called here an incomplete horizon.
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Proof. (i) =⇒ (ii) and (iii) =⇒ (iv) are clear. (ii) =⇒ (iii) is the object of the ribbon argument
and is proved by Lemma 5.4 and Proposition 5.7. (iv) =⇒ (v) is the object of Lemma 5.5 and
Propositions 5.8 and 5.9. Finally, (v) =⇒ (i) is proved by the demonstration of Corollary 5.1.

We can wonder the possible behaviors of the generators of a non-incomplete horizon H. Let
Z ∈ Γ+

NH. We know that for every p ∈ H,
∫
ϕZp
ωZ doesn’t diverge to −∞. This integral could

instead diverge to +∞. We will see that this is actually impossible, as a consequence of the past-
incompleteness of the null generators of a compact future Cauchy horizon. This fact was first
stated by Hawking and Ellis in [HE73, Lemma 8.5.5] and was then rigorously proved in [Min14].
We start by proving the following result :

Lemma D.1
Let H be a compact Cauchy horizon. The following are equivalent :

(i) for every p ∈ H and Z ∈ Γ+
NH,

∫
ϕZp

ωZ = +∞

(ii) there is p ∈ H and Z ∈ Γ+
NH such that

∫
ϕZp

ωZ = +∞

(iii) there is X ∈ Γ+
NH such that ωX(X) > 0.

Proof. (i) =⇒ (ii) is clear. For the converse, notice that the ribbon argument can be used like in
the proof of Proposition 5.7, only replacing −∞ with +∞, to show that for Z ∈ Γ+

NH, the set of
points p ∈ H such that

∫
ϕZp
ωZ = +∞ is open and closed in H. Thus, if Z ∈ Γ+

NH and p0 ∈ H are

such that
∫
ϕZp0

ωZ = +∞ then for every p ∈ H,
∫
ϕZp
ωZ = +∞. Let X ∈ Γ+

NH. There is a smooth
strictly positive function f : H −→ R such that X = fZ. Let p ∈ H, and let F : [0,∞) −→ [0,∞)
be the reparametrization of ϕZp into ϕXp , i .e. such that ϕXp = ϕZp ◦ F . We have

f(ϕZp (F (t))Z(ϕZp (F (t)) = X(ϕXp (t)) =
dϕXp
dt

(t) =
d(ϕZp ◦ F )

dt
(t) = F ′(t)

dϕZp
dt

(F (t)) = F ′(t)Z(ϕZp (F (t)) .

Thus F is the solution of the ODE F (0) = 0, F ′(t) = f(ϕZp (F (t)). Recall that by Proposition 5.6,
ωX = ωZ + d(log f). We can now compute, for ρ ≥ 0,∫ ρ

ϕXp

ωX =

∫ ρ

0

ωX(X(ϕXp (t)))dt

=

∫ ρ

0

f(ϕZp (F (t)))ωZ(Z(ϕZp (F (t))))dt+
[
log f(ϕXp (t))

]ρ
0

=

∫ ρ

0

ωZ(Z(ϕZp (F (t))))F ′(t)dt+ log(f(ϕXp (ρ))/f(p))

=

∫ F (ρ)

ϕZp

ωZ + log(f(ϕXp (ρ))/f(p)) .

Notice that, as f > 0 is continuous on the compact set H, the quantity log(f(ϕXp (ρ))/f(p))
is bounded. Thus, by choice of Z, and as F (ρ) → +∞, we have

∫
ϕXp

ωX = +∞. Hence the
implication (ii) =⇒ (i). (iii) =⇒ (ii) is clear because for such an X, ωX(X) > K for K > 0 a
constant. For the converse, notice that the exact same reasoning as in Lemma 5.5 and Propositions
5.8 and 5.9 works, only replacing −∞ by +∞ and < 0 by > 0.

Proposition D.1

Let H be a compact Cauchy horizon. For every Z ∈ Γ+
NH and p ∈ H,

∫
ϕZp

ωZ 6= +∞.
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Proof. Suppose that the result is false. By Lemma D.1, there is X ∈ Γ+
NH such that ωX(X) > 0.

By Proposition 5.5, the formula

LX(p) =

∫ ∞
0

exp

(∫ ρ

ϕXp

ωX

)
dρ ≥

∫ ∞
0

1dρ = +∞

shows that the null generators of H are future-complete. Moreover, as proved in [Min14], the null
generators of H are past-complete. Thus, let p ∈ H and let γ : R −→ H be the null geodesic on H
such that γ(0) = p and γ′(0) = X(p). By Proposition 2.1, there is a smooth function f : R −→ R∗+
such that for every t ∈ R,

γ′(t) = f(t)X(γ(t)) .

As γ is a geodesic,

0 = ∇γ′γ′

= f ′X ◦ γ + f2(∇XX) ◦ γ
= (f ′ + f2ωX(X) ◦ γ)X .

Thus, f ′ = −f2ωX(X) ◦ γ, i .e. (1/f)′ = ωX(X) ◦ γ. Integrating between 0 and t ∈ R gives, as
f(0) = 1,

1

f(t)
− 1 =

∫ t

0

ωX(X(γ(s)))ds i.e. f(t) =
1

1 +
∫ t
0
ωX(X(γ(s)))ds

.

But then, for t > 0,

f(−t) =
1

1 +
∫ −t
0

ωX(X(γ(s)))ds
=

1

1−
∫ t
0
ωX(X(γ(−s)))ds

.

As there is a constante K > 0 such that ωX(X) > K, the term 1 −
∫ t
0
ωX(X(γ(−s)))ds vanishes

for a finite t > 0, which contradicts the fact that f is defined up to −∞, i .e. the fact that γ is
past-complete. This is a contradiction, hence the result.

The result of Proposition D.1 shows that the only possibility for a compact Cauchy horizon H to
be non-incomplete is that for every Z ∈ Γ+

NH and p ∈ H,
∫
ϕZp
ωZ 6= ±∞. Hence the following

definition :
Definition D.1
A compact Cauchy horizon H is said to be oscillating if it is not incomplete.

Theorem D.1 and Corollary D.1 show that a compact Cauchy horizon is oscillating if and only if
for every Z ∈ Γ+

NH and p ∈ H,
∫
ϕZp
ωZ doesn’t diverge to ±∞, if and only there is Z ∈ Γ+

NH and
p ∈ H such that

∫
ϕZp
ωZ doesn’t diverge to ±∞. We now introduce a related but different kind of

horizon :
Theorem D.2
Let H be a compact Cauchy horizon. The following are equivalent :

(i) for every p ∈ H and Z ∈ Γ+
NH, ρ 7−→

∫ ρ

ϕZp

ωZ is bounded

(ii) there is p ∈ H and Z ∈ Γ+
NH such that ρ 7−→

∫ ρ

ϕZp

ωZ is bounded.

A horizon that satisfies this properties will be called here a bounded horizon.

Proof. (i) =⇒ (ii) is clear. For the converse, let p, Z be as in (ii). The ribbon argument used exactly
like in the proof of Proposition 5.7 shows that the set of points p ∈ H such that ρ 7−→

∫ ρ
ϕZp
ωZ
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is bounded is open and closed in H. Thus, for every p′ ∈ H, ρ 7−→
∫ ρ
ϕZ
p′
ωZ is bounded. For

f : H −→ R a strictly positive smooth function, and X = fZ, We previously proved that∫ ρ

ϕXp

ωX =

∫ F (ρ)

ϕZp

ωZ + log(f(ϕXp (ρ))/f(p))

where F is the reparametrization of ϕZp into ϕXp . As log(f(ϕXp (ρ))/f(p)) is bounded, this formula
shows that for every p′ ∈ H, ρ 7−→

∫ ρ
ϕZ
p′
ωZ is bounded.

Notice that a bounded horizon is also an oscillating horizon. The converse is not true, as there
could be a point p such that ρ 7−→

∫ ρ
ϕZp
ωZ is not bounded and doesn’t diverge to −∞. However,

the following facts hold :

(i) an oscillating horizon with a closed null generator is bounded
(ii) according to [Haw92], the set of compact Cauchy horizons with a closed null generator is

generic.

More precisely, in his article Chronology protection conjecture [Haw92], Stephen Hawking states
that given a spacetime (M, g) and a surface Σ ⊆ M, the set of spacetime-metrics g′ on M
such that the g′-future Cauchy horizon H′ of Σ has a closed null generator is dense in the set
of spacetime-metrics on M (with a few supplementary hypothesis, it is even an open and dense
subset).

Intuitively, this property is supported by the following result, that can be found in [Min14, Th
2.3] : even if H doesn’t admit a closed null generator, because of compactness H will have an
almost closed generator, i .e. that will future-accumulate on every point of itself. Arbitrary small
perturbations of the metric will then be able to close this generator. Hawking used this fact
with the objective of using closed null generators to show that, with physical assumptions, closed
timelike curves cannot develop from a non-compact initial surface, which suggests that time travel
is prevented by the laws of physics, except maybe at the quantum scale.

It worth to mention that Hawking only provides a sketch of proof and intuitive arguments, thus
the genericity of closed generators has yet to be confirmed. We should also mention that Hawking
worked in collaboration with Kip Thorne on the generecity of fountains, i .e. closed and attractive
closed generators in Cauchy horizons, for example in [Tho93]. The genericity of fountains has
since been disproved in [CI94], but the genericity of closed generators is still open.

Here, supposing that it holds, (ii) will be used to classify compact Cauchy horizons into two
categories : those that contain a closed generators, and those that don’t. This last category is
unstable, i .e. arbitrary small perturbation of such a horizon will place it in the other category, and
thus cannot occur if quantum fluctuations are taken into account. We will now prove (i).

Proposition D.2
Let H be a compact Cauchy horizon with a closed null generator. Then H is oscillating if and only
if it is bounded.

Proof. Let Z ∈ Γ+
NH and let p ∈ H such that the null generator γ closes, where γ(0) = p,

γ′(0) = Z(p). Then the flow ϕZp is periodic. Indeed, as ϕZp is a reparametrization of γ, there is
T > 0 such that ϕZ(p, T ) = p. But then the uniqueness of the solution of the ODE (ϕZp )′ = Z ◦ϕZp ,
ϕZp (0) = p shows that ϕZp (T + · ) = ϕZp .
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Thus, the function ωZ(Z) ◦ ϕZp is periodic, and for ρ ≥ 0,∫ ρ

ϕp

ωZ = [ρ]T

∫ T

ϕp
ωZ +

∫ ρ

[ρ]T

ωZ(Z(ϕZp (s)))ds

where where [ρ]T is the integer part of ρ/T . Notice that∣∣∣∣∣
∫ ρ

[ρ]T

ωZ(Z(ϕZp (s)))ds

∣∣∣∣∣ ≤ T‖ωZ(Z)‖L∞(H)

is bounded, and that

[ρ]T

∫ T

ϕp
ωZ

is bounded if and only if it doesn’t diverge to ±∞ if and only if
∫ T
ϕp
ωZ = 0. This proves, as wished,

that in that case, H is bounded if and only if it is oscillating.

Proposition D.2 shows that an oscillating compact Cauchy horizon can be non-bounded, but in
that case it is unstable, as shown by (ii). Abusing vocabulary a bit, let us call ergodic a compact
Cauchy horizon that has no closed null generator. Sections 5.3 and D have shown the following
result :
Theorem D.3
Let H be a compact Cauchy horizon in a spacetime satisfying the dominant energy condition. Then
one of the following holds :
(i) H is ergodic and thus is unstable
(ii) H is incomplete and thus is symmetric
(iii) H is bounded.

As seen in Section 5.3, incomplete compact Cauchy horizons present some sort of symmetry, in
the sense that they have an homogeneity vector field . In the vacuum case, they are even Killing
horizons. Thus, if [Haw92] is correct, compact Cauchy horizons can be divided into the three
categories : unstable, symmetric, and bounded. This suggests that it might be worth to focus on
bounded horizons, to try to find nice properties that they could satisfy, for example the existence
of a vanishing surface gravity, as explained in conclusion. Moreover, there are known examples of
Killing horizons with vanishing surface gravity, thus it could be possible to proceed like in [PR18]
to prove that a compact null hypersurface with vanishing surface gravity is a Killing horizon. If
this is true, if [Haw92] is correct and if bounded horizons have vanishing surface gravity, we could
conclude that compact Cauchy horizons are either unstable or symmetric.

Almost-closedness of incomplete generators
Let H be a compact Cauchy horizon. We say that a generator γ is almost-closed if for every p ∈ γ
and t0 ∈ R, p ∈ γ([t0,+∞)) .

Proposition D.3
Every generator of an incomplete horizon H is almost-closed.

Recall that even if H is not incomplete, it was shown in [Min19] there is at least one almost-closed
generator.

Proof. The idea was introduced in [MI08] and consists in using the Poincarré reccurence theorem.
Denote h the homogeneity vector field given by Theorem 5.1, and denote as usual ω = ωh. As in
[PR18], define a tensor g̃ of type (0, 2) on H by

g̃ := g + ω ⊗ ω .
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As ω(h) = −1, and as g is positive-definite on the spacelike bundle kerω, g̃ is a Riemannian metric
on H. Moreover, as κ = −1, Lhω = dκ = 0 by Lemma 5.6. This fact combined with Lemma 5.1
show that h is a Killing field for g̃. But then the flow (ϕρ)ρ∈R of h is a family of isometries of
the compact Riemannian manifold (H, g̃), thus preserve its Riemannian measure. Denote d the
distance on H induced by g̃. For γ a generator and p ∈ γ, we will construct by induction with the
Poincaré recurrence theorem a sequence ρn → +∞ such that d(p, ϕρn(p)) ≤ 1/n, which will prove
that γ is almost-closed.

The initialisation of the induction for n = 1 is juste the Poincaré recurrence theorem applied to
the dynamical system (ϕk)k≥1. Suppose that d(p, ϕρn(p) ≤ 1/n. Then by the Poincaré reccurence
theorem applied to the dynamical system (ϕk(ρn+1))k≥1, there is an integer k ≥ 1 such that
d(p, ϕk(ρn+1)(p)) ≤ 1/(n+ 1), hence the induction defining ρn+1 = k(ρn + 1) ≥ ρn + 1.

Denote C the chronology violating set of the spacetime (M, g), i .e. the set of points p ∈ M such
that there is a closed timelike curve passing through p.

Corollary D.1

Let H be an incomplete compact Cauchy horizon. Then H ⊆ C .

In other words, any incomplete compact Cauchy horizon is in the closure of the chronology
violating set. This result highlights the relation ship between the loss of determinism and
predictability that defines Cauchy horizons, and the violation of chronology.

For the detailed proof, see [GM21]. Basically, the idea of the proof is to follow the flow of an
arbitrary small vector field defined on a generator γ, and to use Proposition D.3 to show that
the created curve is almost-closed and timelike. It is then possible to close this curve as it passes
through the past timelike cone of any of its point.
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