Geometric tools for life sciences

This axis concerns the field of geometric statistics, and more specifically the study of data with values in varieties, orbifolds or stratified spaces, of which shape spaces are emblematic examples.

Scientific referent

Alain Trouvé

Thematic overview

  • Geometric statistics

As part of her thesis, Elodie Maignant (co-directed with Xavier Pennec), studied the generalization of data reduction techniques by folding to the non-Euclidean case, with applications via Kendall spaces to conformational analysis.

  • Metrics and localc geometric actions

Geodesic trajectories in Riemannian spaces, especially in transport situations, are obviously induced by the choice of metrics and local infinitesimal actions. Despite their usefulness, the overuse of “simple” metrics (such as the L2 metric for optimal transport or isotropic Sobolev metrics) can be to the detriment of more natural metrics encoding modeling constraints. Sub-Riemannian approaches in shape spaces open up important avenues with modular approaches decomposing local infinitesimal actions

  • Geometric divergences

Divergences between probability distributions play a central role in machine learning approaches and as data attachments for spaces of shapes encoded by distributions. Dual kernel norms (or MMDs) provide simple and powerful tools, but optimal transport (OT) approaches are attracting a great deal of interest, particularly since the Sinkhornized version with entropy regularization introduced by Marco Cuturi, albeit at the cost of losing the separation property (it is not a divergence). We have established in Jean Feydy's thesis that this property can be recovered within the framework of a family of Sinkhorn SE divergences that interpolates between MMD and OT as a function of the entropy regularization parameter E.

  • Multiscale geometric integration in neuroscience

Spatialized, joint analysis of molecular levels with the macro level of biological tissues and clinical manifestations, in particular with the arrival of spatial transcriptomics techniques (Meshfish, Barseq) with a view to building integrative data-driven models in neuroscience, is very promising but faces a number of challenges. The team is developing a research program around the technological challenges of developing and deploying new methods for acquiring massive data, as well as the mathematical challenges of realigning multi-modal, multi-scale data acquired in weakly consistent coordinate systems and 2-to-2 spatial domains. The first concrete applications on mouse data in the multimodal framework of atlas alignment on 2D data have just been published, and rely heavily on the possibilities offered by KeOps.

Keywords

Large deformation models ; functional shape analysis ; computational anatomy ; optimal transport ; kernel method ; shape spaces ; image varifolds ; data models

Key facts

Software

La librairie Ke0ps  développée pendant  la thèse  de  Jean Feydy permet le calcul de produits  matrices vecteurs  pour des matrices denses dont les coefficients sont recalculés à la volée sur GPU (et non stockés en mémoire) à partir de leurs formules encodées de façon transparente pour l’utilisateur très orienté sur les architectures neuronales (PyTorch, TensorFlox, etc).

Ke0ps constitue un environnement de développement très adapté pour les méthodes particulaires en particulier pour approches hamiltoniennes de transport dans les espaces de formes avec un impact massif en termes de vitesse d'exécution et de facilité de développement.

La librairie GeomLoss  s'appuie sur Ke0ps et permet de calculer sur GPU

  • des normes de noyau (Maximum Mean Discrepancies)
  • des divergences de Hausdorff analogues aux log-vraisemblances des modèles de mélange gaussien.
  • des divergences de Sinkhorn débiaisées, qui sont des approximations positives et définies des distances de transport optimal.

Collaborations

Principales publications

 

Portfolio

Interactions with other themes at Centre Borelli