Machine Learning

Barycentric embeddings for geometric manifold learning

Published on

Authors: Elodie Maignant

An MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches. A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model. Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning. In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one. The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work.