Machine Learning

Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering

Published on - WSDM '23: The Sixteenth ACM International Conference on Web Search and Data Mining

Authors: Chakib Fettal, Lazhar Labiod, Mohamed Nadif

Over the last few years, various multi-view graph clustering methods have shown promising performances. However, we argue that these methods can have limitations. In particular, they are often unnecessarily complex, leading to scalability problems that make them prohibitive for most real-world graph applications. Furthermore, many of them can handle only specific types of multi-view graphs. Another limitation is that the process of learning graph representations is separated from the clustering process, and in some cases these methods do not even learn a graph representation, which severely restricts their flexibility and usefulness. In this paper we propose a simple yet effective linear model that addresses the dual tasks of multi-view attributed graph representation learning and clustering in a unified framework. The model starts by performing a first-order neighborhood smoothing step for the different individual views, then gives each one a weight corresponding to its importance. Finally, an iterative process of simultaneous clustering and representation learning is performed w.r.t. the importance of each view, yielding a consensus embedding and partition of the graph. Our model is generic and can deal with any type of multi-view graph. Finally, we show through extensive experimentation that this simple model consistently achieves competitive performances w.r.t. state-of-the-art multi-view attributed graph clustering models, while at the same time having training times that are shorter, in some cases by orders of magnitude. CCS CONCEPTS • Computing methodologies → Unsupervised learning; • Information systems → Clustering.