Mathematics
Using Bayesian model averaging to improve ground motion predictions
Published on - Geophysical Journal International
In low-seismicity areas such as Europe, seismic records do not cover the whole range of variable configurations required for seismic hazard analysis. Usually, a set of empirical models established in such context (the Mediterranean Basin, northeast U.S.A., Japan, etc.) is considered through a logic-tree-based selection process. This approach is mainly based on the scientist’s expertise and ignores the uncertainty in model selection. One important and potential consequence of neglecting model uncertainty is that we assign more precision to our inference than what is warranted by the data, and this leads to overly confident decisions and precision. In this paper, we investigate the Bayesian model averaging (BMA) approach, using nine ground-motion prediction equations (GMPEs) issued from several databases. The BMA method has become an important tool to deal with model uncertainty, especially in empirical settings with large number of potential models and relatively limited number of observations. Two numerical techniques, based on the Markov chain Monte Carlo method and the maximum likelihood estimation approach, for implementing BMA are presented and applied together with around 1000 records issued from the RESORCE-2013 database. In the example considered, it is shown that BMA provides both a hierarchy of GMPEs and an improved out-of-sample predictive performance.