Signal and Image processing
A Brief Evaluation of InSAR Phase Denoising and Coherence Estimation with Phi-Net
Published on - Image Processing On Line
In this article, we examine the joint InSAR phase denoising and coherence estimation performance of the network known as Phi-Net [Sica et al., IEEE Transactions on Geoscience and Remote Sensing, 2021]. We briefly examine the method, network architecture, training data and strategy. Then, in the experimental section, we compare the network's performance against the simple boxcar uniform filter. We verify the observations made by the authors, in particular concerning the superior denoising performance and preservation of fine details in the coherence estimation. Our experiments also indicate that an end-to-end deep learning method might bring a small improvement to the patch-based approach adopted in Phi-Net