Fluid mechanics
Analysis of aortic pressure fields from 4D flow MRI in healthy volunteers: Associations with age and left ventricular remodeling
Publié le - Journal of Magnetic Resonance Imaging
Background: Aging-related arterial stiffness is associated with substantial changes in global and local arterial pressures. The subsequent early return of reflected pressure waves leads to an elevated left ventricular (LV) afterload and ultimately to a deleterious concentric LV remodeling. Purpose: To compute aortic time-resolved pressure fields of healthy subjects from 4D flow MRI and to define relevant pressure-based markers while investigating their relationship with age, LV remodeling, as well as tonometric augmentation index (AIx) and pulse wave velocity (PWV). Study type: Retrospective. Population: Forty-seven healthy subjects (age: 49.5 ± 18 years, 24 women). Field strength/sequence: 3 T/4D flow MRI. Assessment: Spatiotemporal pressure fields were computed by integrating velocity-derived pressure gradients using Navier-Stokes equations, while assuming zero pressure at the sino-tubular junction. To quantify aortic pressure spatiotemporal variations, we defined the following markers: 1) volumetric aortic pressure propagation rates ΔP E1 /ΔV and ΔP E2 /ΔV, representing variations of early and late systolic relative pressure peaks along the aorta, respectively, according to the cumulated aortic volume; 2) ΔA PE1-PE2 defined in four aortic regions as the absolute difference between early and late systolic relative pressure peaks amplitude. Statistical tests: Linear regression, Wilcoxon rank sum test, Bland-Altman analysis, and intraclass correlation coefficients (ICC). Results: Spatiotemporal variations of aortic pressure peaks were moderately to highly reproducible (ICC ≥0.50) and decreased significantly with age, in terms of absolute magnitude: ΔP E1 /ΔV (r = 0.70, P 0.39, P