Number Theory
Exceptional biases in counting primes over functions fields
Publié le - Journal of the London Mathematical Society
We study how often exceptional configurations of irreducible polynomials over finite fields occur in the context of prime number races and Chebyshev's bias. In particular, we show that three types of biases, which we call "complete bias", "lower order bias" and "reversed bias", occur with probability going to zero among the family of all squarefree monic polynomials of a given degree in $\mathbb{F}_q[x]$ as $q$, a power of a fixed prime, goes to infinity. The bounds given improve on a previous result of Kowalski, who studied a similar question along particular $1$-parameter families of reducible polynomials. The tools used are the large sieve for Frobenius developed by Kowalski, an improvement of it due to Perret-Gentil and considerations from the theory of linear recurrence sequences and arithmetic geometry.